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(carboxymethyl)-amides, and cholan-24-N-(2-sulfoethyl)-amides, respectively, in place 
of cholanoic acid, which is used to denote free bi le acids. 
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Two enzymes, a 7a-hydroxysteroid dehydrogenase (7a-HSDH) and an NADH-

dependent flavin oxidoreductase (NADH:FOR), have been purified to apparent 

electrophoretic homogeneity from the i ntestinal anaerobe Eubacterium sp. VPI 12708. 

Using a protocol consisting of four chromatographic separations, the 7a-HSDH was 

purified by a factor of over 1200-fold with more than a 30% final recovery. Subun�t 

molecular mass was estimated to be 32 Kdal by SDS-PAGE, while native molecular 

mass estimates from gel fi ltration were 124 Kdal. The purified 7o:-HSDH was able 

to uti l ize a variety of bile acids containing an unhindered 7o:-hydroxy moiety as 

substrates, existi ng ei ther as free acids or glycine or taurine conjugates. The presence 

of an oxo moiety at position 3 or 12 profoundly altered the kinetic values for this 

enzyme. 

The structural gene for the 7o:-HSDH was cloned on a 3.8 Kb Kpnl-Pstl 

fragment and was sequenced using the dideoxy chain termination method. An open 

reading frame of 798 bp encoding a 266 amino acid protein was detected. The N-
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terminal amino acid sequence of the purified protein was identical to the first 22 

amino acids predicted from the open reading frame. Putative transcriptional 

promotor and terminator regions along with a tentative ribosome binding site were 

also located. Northern blot analysis indicated that this protein  was expressed 

constitutively on an approximately 1 Kb monocistronic message. During sequence 

analysis, the 7a-HSDH was found to be highly homologous to several members of 

the short-chain, non-zinc alcohol/polyol dehydrogenase superfamily. 

Using a five step protocol, the NADH:FOR was also purified to homogeneity. 

A final purification of greater than SOO-fold with an 1 1  % recovery was obtained. The 

purified protein  had a subunit  molecular mass of 72 Kdal and a native mass of 2 10  

Kdal, suggesting that it  exists either as a dimer or a trimer. Northern blot, Western 

blot, and activity stains of native gels all i ndicated that the NADH:FOR is a cholate

inducible protein. N-terminal amino acid sequence determination revealed a 

significant homology to enoate reductase from Clostridium kluyveri. Since the enoate 

reductase is i nvolved i n  the reduction of a variety of a/ f3 u nsaturated carboxylates, 

this homology may be indicative of the physiological function of the NADH:FOR in 

Eu. sp VPI 12708. 



INTRODUCTION 

The Microflora of the Gastrointestinal Tract: The gastrointestinal (GI)  tract may be 

viewed as an open ecosystem existing under steady-state conditions. As in  all 

biological systems, the GI tract is referred to as open because materials and energy 

are exchanged between the internal and external environment. This exchange 

process can be represented either by ingestion of food stuffs and elimination of waste 

products in the feces, or secretion of digestive fluids into the GI lumen and 

absorption of water, electrolytes, and nutrients from the lumen by the host organism. 

Since each physiologically distinct area of the GI tract is maintained at relatively 

constant physical conditions (ie. pH, temperature, osmotic pressure, and flow rate), 

the system may be considered to be steady-state. As a consequence of ingesting nofi

sterile substances, the G I  tract is exposed to a variety of bacterial species, some of 

which are able to colonize specific regions. The normal, mature human GI tract 

contains an immense and diverse microbial population which is capable of interacting 

both with the material within the G I  lumen and the host tissues themselves. I ndeed, 

of the 1 014 cells which comprise the adult human organism 9 x 1 013, or 90%, are 

bacteria [ 1 5 1 ] . The vast majority of these bacterial cells are distributed throughout 

the GI tract. 

The GI tract is composed of five physiologically distinct regions: the 

1 
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esophagus, stomach, small intestine, cecum, and large intestine [ 1 65] .  In humans and 

other omnivorous/carnivorous mammals, however, the cecum is very under

developed and is generally not physiologically significant. Due to differences in  

physical conditions, each of  the  digestive regions harbors a microbial community 

which is unique both in size and composition. As shown in Figure 1, bacteria can be 

recovered from the lumenal contents throughout the entire GI tract. In comparison 

to the upper GI (stomach, and small intestine), though, the lower GI tract (colon and 

rectum) contains the far greater fraction of the total bacterial population. However, 

the mere presence of colony-forming units at a site within the GI tract is not 

necessarily an indication of the autochthonous ( indigenous) flora at that location. 

In  assessing the flora at any site within the GI tract, i t  is necessary to d istinguish 

between autochthonous bacteria and allochthonous (transient) bacteria, which do not 

contribute to the overall economy of the ecosystem. The autochthonous bacteria of 

the i ntestine are defined as those species capable of growing anaerobically, always 

found in  normal subjects, located i n  a specific region, colonjzing their habitat during 

succession in infant hosts, capable of maintaining a constant population in a climax 

community, and able to associate with the i ntestinal mucosa [5,40, 1 50, 1 60]. When 

using these criteria, the stomach is found to be essentially devoid of any indigenous 

bacteria [38]. The bacteria cultured from stomach contents, such as i l lustrated in 

Figure 1, are all considered to be allochthonous. This assertion is  confirmed by the 

magnitude of the error bar (suggesting a large variation in population size), and the 

fact
. 
that the types of bacteria cultured differed substantially between individuals 

[ 1 27]. Likewise, the upper portions of the small intestine (duodenum and jejunum) 
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Figure 1: Distribution of the Microflora in the Human GI Tract. The anaerobk 
microbial population present in the lumenal space at each region of the digestive 
tract was determined from five "healthy" individuals, within 4 hours of expiring. The 
areas of the GI tract are abbreviated as follows: 

S: Stomach, D: Duodenum, J:  Jejunum, I: I leum, AC: Ascending Colon, 
TC: Transverse Colon, DC: Descending Colon, R: Rectum. 

Data were taken from Moore et al  [ 1 27], page 9. The values are represented as 
averages from five individuals ± Standard Deviation. 
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are also sparsely populated by bacteria. The species most frequently isolated from 

the duodenum and jejunum include Streptococci, StaphyLococci, and Lactobacilli [ 1 5 1 ] .  

In contrast, the i leal bacterial population is  more like that of  the large bowel. The 

number of bacteria present has consistently been found to be greater than in  ei ther 

the duodenum or jejunum [37,38,56]. Furthermore, Bacteroides, Bifidobacteria, and 

enteric organisms are the predominant organisms cultured, with fewer Streptococci 

and Lactobacilli present [56]. The large intest ine harbors, by far, the greatest 

proportion of the GI tract microflora and has received the most attention. For many 

years, the microflora of the large bowel was thought to be comprised of Escherichia 

coli, Lactobacilli, and a few facultative anaerobes. However, after the advent of 

techniques for the cultivation of strictly anaerobic bacteria, it is now recognjzed that 

the majority of the i ntestinal bacteria are indeed anaerobes, with facultative 

anaerobes such as E. coLi constituting less than 1 %  of the total population [56]. The 

colon and rectum contain a very stable, climax community of microorganisms. The 

size of the population (approx 1 x 1 01 1  bacteria per gram dry weight) and relative 

distribution of bacterial genera is constant over the length of this region. Using 

anaerobic techniques, several investigators have enumerated and identified the 

bacteria present in the large bowel [56,65,8 1 , 126]. Moore and Holdeman [ 126] 

estimated that over 400 species of bacteria are present in  the feces of healthy 

humans. A preponderance of the bacteria identified were from the genera of 

Bacteroides, Fusobacterium, Bifidobacterium, Eubacterium, and Peptostreptococcus (all 

greater than 1 010 colonies per gram). Lesser populations of CLostridia, and facultative 

anaerobes were also detected ( 1 08 to 1 09 colonies per gram). These bacteria most 
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l ikely encompass the majority of the autochthonous species present i n  the large 

i ntestine. Other significant indigenous populations of bacteria, however, may be 

associated with the intestinal epithel ium and thus be underestimated by these studies. 

Physiological Impact of the Intestinal Microflora on the Host: Although the size and 

composition of the i ntestinal microflora has been determined, the impact this 

community has upon the human host i s  largely unknown. Unlike the situation in  

ruminants and monogastric herbivores, the human microbial flora does not provide 

a significant contribution to the d igestion of food stuffs for the host. The best data 

pertaining to the functions of the autochthonous microflora have come from studies 

using gnotobiotic (germ-free) animals. The absence of a bacterial population in the 

GI tract has a number of striking effects upon the host organism. The i ntestinal 

epithelial cell turnover rate is decreased in germ-free as compared to conventional 

mice (4 days vs. 2 days) [ 1 ] ,  result ing in the formation of elongated intestinal vil l i .  

Thi s  may partially explain why the presence of a normal microflora impedes the 

growth rate of many animals. Epithelial cell functions are also altered by the 

micro flora. The levels of several mucosal enzymes are depressed [32, 144, 1 80], and 

the absorption of nutrients [58,75] ,  vitamins [58], and minerals [ 1 45] are decreased 

i n  conventional, as compared to germ-free animals. Overall intestinal motil i ty i s  

affected as well, being accelerated by the presence of the normal flora [2]. 

The development of the host immune system is also i nfluenced by the 

presence of the intestinal flora. The secondary lymphatic tissues, such as the spleen 

and lymph nodes [ 12], of gnotobiotic animals tend to be under-developed. The 

Peyer's patches [ 1 ]  and lamina propria [30, 1 34] of germ-free animals are also 
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diminished in  size and complexity. Additionally, secretory and serum 

immunoglobulin levels are depressed in germ-free animals by up to lO-fold [30] . All 

of these deficiencies are corrected by the colonization of germ-free animals by the 

indigenous microflora. The cell-mediated immune system functions, in contrast, are 

not affected by the presence or absence of the intestinal bacteria [ 13,59, 1 6 1 ] . 

The presence of the autochthonous microflora also serves to protect against 

infection of the i ntestinal tract by potential pathogenic strains of bacteria. This was 

dramatically i l lustrated by Bohnhoff et at. [ 18]. After using streptomycin to el iminate 

a portion of the indigenous microflora, an increase i n  sensitivity to i nfection by 

Salmonella was observed; the 1D50 for the antibiotic treated animals decreased from 

1,000,000 bacteria to just 1 0  bacteria per animal. The manner i n  which the normal 

flora exert this protective effect is not known. Several possible mechanisms have 

been suggested; i ncluding competition for carbon and energy sources or epithelial 

binding sites, and the production of bacteriocins or other toxic products by the 

members of the indigenous micro flora. 

Finally, the members of the indigenous microflora are capable of chemically 

modifying a variety of compounds in the intestinal lumen. These modifications may 

result in  the formation of new compounds which differ, both in  their physicochemical 

properties and physiological effects, from their parent molecules. Several drugs and 

other xenobiotic compounds are known to be affected by microbial action i n  the 

intestine. Some drugs, such as sulfasalazine, are converted to a biologically active 

form by microbial action [ 142], while others, l ike d igoxin, are inactivated [ 107]. 

Exogenous compounds derived from the diet may also be altered to form more toxic 
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products; this is exemplified by the production of nitrosamines from nitrites [ 100 

and cylohexyamine from cyclomate [39] . Compounds of biological origin are also 

susceptible to m icrobial biotransformations. Cholesterol and other neutral steroids 

[ 19, 1 09] are known to be extensively modified by the bacterial flora. Bile acids, too, 

are modified in the intestine, result ing in the formation of over 20 different 

metabolites [72, 124]. Some of metabolites formed as a result of these modifications 

play an important role in the physiology of the host organism. 

Bile Acid Structure, Nomenclature, and Properties: Bile acids are a class of steroids 

derived from cholesterol. Although bile acids comprised of 26, 27, or 28 carbons 

exist, the predominant series found i n  healthy human individuals and other higher 

mammals contains 24 carbons [70, 12 1 ]  and these shall be d iscussed exclusively in this 

dissertation. The bile acid nucleus is  a saturated, four-ring structure comprised of 

three fused six carbon rings and one five carbon ring in a cyclopentanoperhydro

phenanthrene arrangement. Projecting from this nucleus at carbons 10 and 13 are 

two methyl groups, and a five-carbon side chain which terminates with a carboxyl 

group at C-24 extends from carbon 1 7  (Figure 2A) [87,88] .  The orientation of the 

methyl groups relative to the 4-ring nucleus is defined by convention as /3 ;  adducts 

in this orientation should be thought of as projecting above the plane of the ring 

structure. Side groups in the opposite orientation are termed ex, and are i l lustrated 

as broken or dotted l ines as opposed to /3, which are drawn as solid l ines. Bile acids 

contain  several chiral carbons and, therefore, are able to assume many stereoisomeric 

forms. Of particular importance is the orientation about carbon 5. If the hydrogen 

at C-5 is on the same face of the ring structure as the methyl group attached to C- 10  
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FIG URE 2: The Structure of Bile Acids. 

A: A planar representation of the bile acid carbon skeleton. Carbons are 
numbered as previously assigned [87,88]. Each of the four rings are 
referred to by their corresponding letter. 

B: A Fisher representation of the S,B-bile acid, cholic acid. 

C: A Fisher representation of the Sa-bile acid, allo-cholic acid. 
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(5-{3 cholane) the ring fusion is  termed AlB cis. Conversely, when the hydrogen at 

C-5 is on the opposite face (5-a cholane) the ring fusion is AlB trans. All other ring 

fusions in the bile acid structure are trans. The overall difference of the structure of 

these stereoisomers may be seen in Figure 2B and C. The 5{3-bile ring structure, 

when viewed as a Fisher model, shows a sharp bend, bringing the hydroxyl groups 

into closer proximity to each other as compared to the 5a-bile acids. The vast 

majority of bile acids formed in humans are 5{3 bile acids. The 5a-bile acids, termed 

allo-bile acids, assume a more planar conformation and are subsequently less polar. 

These bile acids account for less than 1 % of the total bile acid pool in humans [48] . 

The bile acids are differentiated primarily by the number, position, and 

orientation of hydroxy groups on the basic ring structure described above, and the 

identity of any groups conjugated to the carboxyl group at C-24. The bile acids used 

in this d issertation will be primarily referred to by their trivial or common names. 

These names usually are derived from the Greek or Latin roots related to the origin 

or function of the molecule [73] .  Examples of this include: ursocholic acid, 

urso = bear; hyocholic acid, hyo = pig; chenodeoxycholic acid, cheno = goose; and 

muricholic acid, murine = mouse. Bile acids conjugated to glycine or taurine at C-24 

are given the prefixes glyco and tauro, respectively. Other prefixes are given to 

specific groups of bile acids; for example the names of the 5a-bile acids are preceded 

by allo, while iso is used to identify 3{3-hydroxy bile acids. All trivial bile acid names 

used in this dissertation, along with their corresponding systematic names, are given 

in the List of Abbreviations. Planar representations of all bile acids and 

intermediates mentioned in the text are given in the Appendix. 
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As can be seen in Figure 2B and C, regardless of the orientation of the C-5 

hydrogen, all the hydroxy groups of cholic acid l ie on the opposite face of the ring 

structure from the methyl groups attached at C- l O  and C-13 .  This spatial separation 

of hydrophilic and hydrophobic domains gives the bi le acids the amphophilic 

character essential for their role in l ipid emulsification. As amphophiles, bile acids 

are capable of forming both pure and mixed micelles under the appropriate physical 

conditions [48, 159]. Most of the physicochemical properties of the bile acids, 

including the critical micellar concentration, critical micellar temperature, solubil ity, 

and relative hydrophobicity, are profoundly affected by the position and orientation 

of the hydroxy groups present [22,79] . The ionization state of bile acids is l ikewise 

affected by conjugation at C-24. Free bile acids have been determined to have a pKa 

of about 5.0, while bile acids conjugated to glycine and taurine have pKa values of 

2.6 and < 1 ,  respectively [22]. The bile acids, therefore, wil l  be nearly completely 

deprotonated under most physiological conditions (approx pH 7). These physico

chemical properties directly impact upon the physiological functions of the bile acids 

in vivo [80]. 

Bile Acid Biosynthesis: Since bile acids are synthesized from cholesterol by the liver 

cel ls, the formation and regulation of this precursor pool is important to the 

understanding of bile acid biosynthesis. The process by which acetate is converted 

into cholesterol can be divided into three stages [34] .  In  the first set of reactions 

acetyl coenzyme A (CoA) is converted to ,B-hydroxy-,B-methylglutaryl-CoA (HMG

CoA). Up to this point the pathway is not committed to the formation of cholesterol. 

The committed, and rate l imiting step in cholesterol biosynthesis is HMG-CoA 
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reductase, which cleaves the CoA and reduces HMG to mevalonate [ 147]. This 

enzyme is subject to exquisite regulation and has been extensively investigated. In 

addition to its role i n  cholesterol synthesis, mevolonate may serve as a precursor for 

the formation of docitol, ubiquinone, and isopentenyl adenine [ 1 8 1 ] .  The second set 

of reactions involves the-formation of squalene from mevalonate through a series of 

phosphorylation-condensation reactions. In the final set of reactions, squalene is 

converted into cholesterol by several membrane bound enzymes. 

The pathways for the b iosynthesis of the primary bile acids, cholic acid and 

chenodeoxycholic acid, are shown in Figure 3. The first, and rate l imiting, step i n  

bi le acid formation i s  the introduction of  a 7a-hydroxy group by cholesterol 7a

hydroxylase. This enzyme is a cytochrome P450-dependent monooxygenase [ 130] 

whose activity, like that of H MG-CoA reductase, is h ighly regulated. The 313-hydroxy 

moiety of 7a-hydroxycholesterol is oxidized and the as bond migrates to give a 3-oxo

a 4-intermediate. An additional hydroxyl group may be added at position 12 by the 

action of a microsomal cytochrome P450 1 2a-hydroxylase [ 16] .  A subsequent two 

step reduction results in epimerization of the hydroxyl at C-3 to yield either 513-

cholestane-3a,7a-diol or 513-cholestane-3a,7a, 12a-triol. Finally, the aliphatic side 

chain is shortened through a multi-stepped oxidative cleavage process yielding the 

primary bile acids, cholic acid and chenodeoxycholic acid. 

Bile acid biosynthesis is primarily regulated at two points: the 7a-hydroxylation 

of cholesterol, and the formation of cholesterol precursor molecules at HMG-CoA 

reductase. The regulation of these enzymes is similarly affected by many 

differentphysiological conditions [ 1 72]. Bile acids have long been thought to also be 
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FIG URE 3: Pathway for Bile Acid Biosynthesis in Humans. The mechanism for bile 
acid synthesis in  humans is  i l lustrated. Figure adapted directly from Vlahcevic et al. 
[ 1 72].  The steroid intermediates and products shown are: 

I 
I I  
I I I  
IV 
V 
VI 
VII 
VIII 
IX 
X 
XI 
XII 
XIII 
XIV 
XV 
XVI 

cholesterol 
7 a-hydroxycholesterol 

7a-hydroxy-4-cholesten-3-one 
7 a, 12a-dihydroxy-4-cholesten-3-one 

5,B-cholestane-3a, 7 a, 12a-triol 
5,B-cholestane-3a,7a , 12a,26-tetrol 

3a,7 a, 12a-trihydroxy-5,B -cholestanol-26-al 
3a, 7 a, 12a-trihydroxy-5,B-cholestanoic acid 

3a,7 a, 12a,24-tetrahydroxy-5,B -cholestanoyl-CoA 
chol ic acid 

5,B-cholestane-3a, 7 a-diol 
5,B-cholestane-3a, 7 a,26-triol 

3a,7a-dihydroxy-5,B-cholestanol-26-al 
3a,7a-dihydroxy-5,B-cholestanoic acid 

3a,7a,26-trihydroxy-5,B-cholestanoyl-CoA 
chenodeoxycholic acid 
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i nvolved i n  regulating thei r  own biosynthesis through feedback inhibition. This 

argument has been strengthened by several recent bile acids feeding studies [76,77] .  

In these papers, the hydrophobic bile acids were demonstrated to inhibit 7a.

hydroxylase and H MG-CoA reductase activities, as a function of their hydrophobicity. 

In contrast, the hydrophil ic bile acids had no effect upon the activity of these 

enzymes. 

Enterohepatic Circulation of Bile Acids: After synthesis in  the l iver, bile acids are 

conjugated at C-24 to e ither glycine or taurine, and secreted with other substances 

i nto the hepatic bi l iary duct system. The hepatic bile is comprised of bile acids, 

cholesterol, phospholipids, bi l i rubin, and electrolytes in an aqueous solution [23] .  

The bile acids are the most abundant solute, being present at 20 to 30 mM 

concentrations [23] .  This bile is subsequently stored and concentrated in  the 

gal lbladder. During digestion, as a result of physical and hormonal stimulation, the 

contents of the gallbladder are released i nto the duodenal lumen. In the duodenum 

and jejunum, bile acids aid in the solubil ization and degradation of fatty materials. 

Conjugated bile acids are efficiently reabsorbed in the terminal i leum by an sodium

dependent, active transport system [60,82], while free bile acids are absorbed by 

simple diffusion throughout the intestinal tract. Although small amounts (400 to 600 

mg/day) of bi le acids are not absorbed and pass into the large i ntestine, the majority 

(> 95%) are absorbed by these processes during each passage through the intesti ne. 

Following absorption, the bile acids are returned to the l iver by way of the portal 

hepatic vein. In the l iver, hepatocytes efficiently extract the bi le acids from the 

portal blood so that the total bile acid level in  the systemic circulatory system is very 
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low [8]. The hepatocytes then reduce and re-conjugate any bile acid intermediates 

that may have been formed by microbial action. As a result of this enterohepatic 

circulation, the bi le acid pool may be reused several times per day with relatively 

l ittle resultant turnover. 

Microbial Modifications of Bile Acids: During their transit through the intestinal 

tract, the primary bile acids come into intimate contact with the indigenous microbial 

flora. Using germ-free animals, i t  has been shown that these bacteria are responsible 

for the transformation of the primary bile acids into a number of metabolites [98,99]. 

The nature of the bacterial modifications are necessarily restricted by the reducing 

nature of the intestinal contents. The major types of reactions are represented in  

Figure 4 ,  and i nclude hydrolysis of  the  bile acid conjugate amide bond, the reversible 

oxidation and reduction of hydroxy groups, possibly resulting in their epimerization, 

and dehydroxylation (see references 72,83,85, and 109 for reviews). 

The conjugated bile acids are remarkably resistant to enzymatic cleavage by 

the intestinal proteases. A wide variety of bacteria, however, possess the abi l i ty to 

cleave this amide bond to produce free bile acids and glycine or taurine. Bile salt 

hydrolase activity has been detected in the genera Bacteroides, Bifidobacterium, 

Fusobacterium, Clostridium, Lactobacillus, Peptostreptococcus, and Streptococcus 

[6 1 , 10 1 , 125 , 1 55], although i ts presence varies substantially between species. While 

most of these enzymes are able to uti l ize both glycine and taurine conjugates, some 

enzymes exhibiting specificity for the amino acid, or bile acid have been 

demonstrated [63,97, 10 1 , 1 63] .  Although bile sal t hydrolases have been characterized 

in whole cells and cell-free extracts from several organisms, relatively few have been 
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FIGURE 4 :  Common Microbial Modifications of  Bile Acids. 
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purified to homogeneity [63,97, 1 63] .  

Many members of the intestinal microflora are also possess the abi l ity to 

oxidize the hydroxy groups of bi le acids in  a pyridine nucleotide-dependent manner. 

Genera which have been found to express hydroxysteroid dehydrogenase (HSDH) 

activities include Bacteroides, Bifidobacteria, Escherichia, Clostridia, Fusobacteria, 

Eubacterium, and Peptostreptococcus [9,4 1 ,47,53,54,78,86, 1 13, 1 1 8] .  These enzymes 

may be viewed as highly specialized secondary alcohol dehydrogenases. As a whole 

the HSDH's are extremely regio- and stereo-specific with respect to the hydroxy 

group oxidized. However, a broad range of substitutions are generally tolerated at 

other positions of the bile acid substrate. Bacteria have been isolated which produce 

enzymes capable of oxidizing bile acids at positions 3, 6, 7,and 1 2  in both the a and 

f3 orientations (for examples, see [3,44,5 1 ,69, 1 12, 1 7 1 ] ). The 7a-HSDH, however, 

appears to be the most widely distributed representative [9] . This may reflect the 

fact that the 7a-hydroxy group is the most chemically reactive of these substitutions. 

The combined action of two HSDH's with the same regio- but opposite stereo

specificities (eg. 7a-HSDH and 7f3-HSDH) can result in the epimerization of the 

hydroxy group. This has been demonstrated to occur both when a single bacterial 

strain expresses both enzymes [42,43] and in mixed cultures where these enzymes are 

possessed by different bacteria [ 1 1 1 ] .  Like the bile salt hydrolases, few HSDH's have 

been purified to homogeneity. The HSDH's which have been characterized to date 

vary substantially with respect to subunit and native molecular mass, kinetic 

properties, cofactor specificity, and regulat ion. Therefore, i t  is  not presently clear 

whether these enzymes are all related members of a secondary alcoholjpolyol 
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dehydrogenase fami ly or if, througb convergent evolution, several different enzymes 

have arisen which are able to perform simi lar reactions. 

Arguably, the most physiologically important biotransformation of bile acids 

involves the removal of one of the hydroxy groups. In humans, bacterial 7a.

dehydroxylation of cholate and chenodeoxycholate is the sole pathway for the 

formation of the secondary bile acids deoxycholate and l ithocholate, respectively. 

These two secondary bile acids have been demonstrated to account for up to 25% 

of the total human bile acid pool [ 157]. When compared to bile salt hydrolase and 

HSDH d istribution, the number of intestinal bacteria able to 7-dehydroxylate bile 

acids is relatively small ( 103 to lOS bacteria per gram of feces) [54, 164]. All of the 

known 7-dehydroxylating bacteria are Gram-posit ive, belonging to the genera 

Eubacterium and Clostridium. The reaction mechanism of 7a.-dehydroxylation was 

first examined by Samuelsson [ 148], using doubly labelled bile acids fed to 

conventional rats. Based upon the loss of radiOlabel at the 6/3 position, he p-roposed 

the two step model for dehydroxylation i l lustrated in Figure 5. The first step involves 

the trans elimination of water (via the loss of the 7a.-hydroxy and 6/3-hydrogen) to 

yield an unsaturated, ,:16 bile acid intermediate. In the second step, the double bond 

is reduced, epimerizing the original hydrogens at positions 6 and 7, and yielding the 

appropriate secondary bile acid. In vitro support for this mechanism was provided 

by the demonstration that cel l-free extracts of Clostridium bifermentans [55] and 

Eubacterium sp. VPI 12708 [ 174] were able to reduce chemically synthesized ,:16_ 

i ntermediate to deoxycholic acid. The most detailed analysis of 7a.-dehydroxylation 

has been performed using Eu. sp. VPI 12708, which possesses a cholic acid-inducible 
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FIGURE 5 :  The Samuelsson Model for 7a-Dehydroxylation of Bile Acids [ 148]. 
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7 -dehydroxylation activi ty [84]. Prel iminary examination of the cofactor requirements 

of this reaction in vitro gave somewhat unexpected results [ 1 74, 1 77] .  The reduced 

pyridine nucleotide NADH inhibited the reaction, rather than stimulating the activity 

as expected. Moreover, NAD+ was found to stimulate both the reduction of the ,:16_ 

i ntermediate and overall dehydroxylation. The reduction of the ,:16 intermediate was 

also found to be stimulated by free, reduced flavins. These results suggest that one 

or more oxidative steps may be involved in this reaction, prior to the reduction of the 

,:16 u nsaturated bile acid intermediate. Upon further examination of 7CJ.-

dehydroxylation by cell free extracts, using radiolabled bile acids, a water soluble, bile () 

acid-nucleotide conjugate was d iscovered [27]. The nucleotide portion of this u nique 

conjugate was shown to be ADP, while the bile acid moiety was identified by gas 

chromatography-mass spectrometry to be 3-oxo-,:14  deoxycholic acid. Based upon 

these results, a new reaction mechanism was proposed for 7CJ.-dehydroxylation (Figure 

6). In this model, dehydroxylation is thought to i nvolve an initial two step oxidation 
, 

of cholic acid, forming 3-oxo-cholic acid, and 3-oxo-,:14-cholic acid. A subsequent 

trans elimination of water would then result in the production of 3-oxo-,:14,6-

deoxychol ic acid. Following a three step reduction, the secondary bile acid, 

deoxycholic acid, would be formed. This  model serves to explain both the enigmatic 

stimulation of dehydroxylation by oxidized NAD and the formation of the 3-oxo-,:14 -

deoxycholic acid intermediate. It should also be pointed out that this reaction 

mechanism is completely compatible with the results reported by Samuelsson. 

Further evidence for the formation of a 3-oxo-,:14-intermediate in vitro came from 

experiments using doubly labeled (either 14C_24, 3H-3,B, or 14C_24, 3H-5,B) cholic acid 
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FIGURE 6: A Model for Bile Acid 7a-Dehydroxylation Involving an Initial Two-Step 
Oxidation [27]. 
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by whole cells and cell-free extracts of Eu. sp. VPI 12708. Dehydroxylation was 

reported to result i n  the loss of 80 to 85% of tritium at both the 3f3- and 5f3-positions 

[ 17]. In  addition, cell-free extracts of Eu. sp. VPI 12708 were also demonstrated to 

be capable of forming deoxycholic acid in vitro when provided with each of the 

intermediates proposed in this pathway (Hylemon et al. accepted for publication J 

Lipid Res. 1 /9 1 ). The presence of a 3-oxo-.:14-steroid structure is by no means unique 

to e ither 7a-dehydroxylation or this particular intestinal anaerobe. Indeed, a simi lar 

i ntermediate is reported to be formed during the hepatic biosynthesis of bile acids 

(see Figure 3). The abi l ity to reduce 3-oxo-.:14-steroids has previously been 

demonstrated with both whole cells [ 10] and cell-free extracts [ 1 66] of other i ntestinal 

isolates. Additionally, several aerobic organisms have been shown to form 3-oxo-.:14-

cholic  acid and 3-oxo-.:14,6-deoxycholic  acid during the oxidative degradation of cholic 

acid [72, 106] .  Evidence for the importance of this mechanism of bile acid 

dehydroxylation in vivo was also obtained using doubly labeled cholic aCid, after 

ingestion by human volunteers [ 1 7] .  Based upon the loss of label at the 3f3- and 5/3-

position it was estimated that at least 80 to 90% of the conversion of cholic acid to 

deoxycholic acid by the human intestinal microflora i nvolves the formation of a 3-

oxo-.:14-intermediate. 

During TLC analysis of 7a-dehydroxylation bile acid end-products formed by 

this organism, several intermediates of unknown structure were discovered (Figure 

7). Enzymatic analysis, combined with gas chromatography-mass spectroscopy, 

identified these products as allo-3-oxo-deoxycholic acid, and allo-deoxycholic acid .  

The presence of these allo-bile acid intermediates suggests that the hydrogen at C-5 
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FIG URE 7: TLC Analysis of the Bile Acid Products Formed by Eu. sp. VPI 12708. 
14C_24 cholic acid was treated with either u ninduced (UI) or cholic acid-induced (I) 
cell free extract as previously described [ 1 74]. The bile acid products were separated 
on TLC using solvent system S-l of Eneroth [49]. 

The full names for the i ntermediates indicated are given in the List of Abbreviations. 
The structures for all bile acids and i ntermediates are i l lustrated in the Appendix. 
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can be epimerized during reduction of 3-oxo-.:14-deoxycholic acid. Although 

themicrobial production of allo-bile acids via this intermediate has been proposed 

previously [95,96], this represents the first demonstration of production of these bile 

acids as a result of dehydroxylation. The model for 7a-dehydroxylation in this 

organism, as modified to account for this reaction is i l lustrated in  Figure 8. This 

pathway may represent the primary source of human allo-bile acids. However, l iver 

cells too, are capable of reducing 3-oxo-.:14-bile acid i ntermediates u ndergoing 

enterohepatic circulation, and could be responsible for all-bile acid production in the 

human as well. 

The 7a-dehydroxylation of bile acids, as now proposed, should i nvolve the 

coordinated activity of at least five or six specific enzymes. I n  Eu. sp. VPI 12708, 

several chol ic acid-inducible polypeptides have been reported [ 1 74] which are thought 

to be involved in this process. Two of these, with molecular masses of 27 and 45 

kDa, have been purified to homogeneity [26, 137]. The 27 kDa protein  was shown, 

by immunoinhibi tion, to be important for 7a-dehydroxylation activity. The N-terminal 

amino acid sequence of this protein suggested that it was related to an alcoholjpolyol 

dehydrogenase superfamily. Based upon these results, it has been proposed that the 

27 kDa product is a 3a-HSDH. Molecular genetic analysis of the 27 kDa protein 

gene revealed that multiple copies were present in the bacterial chromosome [ 1 79]. 

Three copies of this protein have since been cloned and sequenced [26,28,64, 179]. 

Two of the genes (27K- 1 and 27K-3) are identical and are transcribed on an approx 

1 kb monocistronic message [28, 1 79] The third copy (27K-2) is about 80% identical 

to the nucleotide sequence of the others copies and nearly 90% homologous to 
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FIG URE 8: A New Model for 7a-Dehydroxylation by Eu. sp. VPI 1 2708 Which 
Accounts for Allo-Bile Acid Formation. 
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their deduced amino acid sequences. The 27K-2, gene is transcribed as part of a 6 

to 8 kb polycistronic message [ 1 78]. The function of the 45 kDa protein, which is 

also part of the large operon, i s  still unclear. A cholic acid-inducible NADH:flavin 

oxidoreductase is also expressed by Eu. sp. VPI 1 2708. This enzyme has previously 

been partially purified and characterized [ 108]. The physiological function of this 

protein is thought to be related to the production of free reduced flavins for the 

reduction of 3-oxo-� 4.6-deoxychol ic acid to 3-oxo-� 4-deoxycholic acid. To date, 

however, it has not been possible to unequivocally assign a catalytic activity to any 

of the chol ic acid-induced proteins. Bacterial dehydroxylation of 713-hydroxy bile 

acids has also been reported [52, 175]. However, the reaction mechanjsm for this 

biotransformation in vivo or in vitro has not been studied. 

Physiological Significance of Bile Acid Biotransformations: The microbial 

modifications of bile acids have a direct impact upon their physicochemical 

properties. This, in turn, may alter the physiological effects exerted by these 
-

molecules. These changes have important impl ications for the host animal. For 

example, microbial modifications of bile acids are important in the regu lation of 

human serum cholesterol levels. In general, the bacterial reactions described above 

(deconjugation, oxidation/reduction of hydroxy groups, and dehydroxylation) reduce 

the polarity and solubility of the bile acids. As a result, these products do not 

emulsify l ipids as well [22,80], and are not themselves absorbed from the intestinal 

tract as efficiently as their parent compounds [23] .  Hydrophobic bile acids have also 

been demonstrated to be potent regulators of both cholesterol and bile acid 

biosynthesis in the l iver [76,77]. The combined action of reduced cholesterol and 
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lipid absorption, depression of HMG-CoA reductase activity, and the loss of bile 

acids from the enterohepatic circulation all act to reduce serum cholesterol levels. 

In addition, the more hydrophobic bile acids (especially the secondary bile acids, 

deoxycholic acid and l i thocholic acid) are more toxic than their precursors [ 152]. The 

production of these toxic products may be partially responsible for the increased 

intestinal epithelial cell turnover rate and depressed growth rate seen i n  conventional 

animals as compared to germ-free animals. The secondary bile acids have also been 

postulated to be involved in the promotion of colon cancer [25 , 128]. 

The stabil ity and composition of the intestinal microflora is also affected by 

bile acids biotransformations. Free bile acids, but not conjugated bile acids have 

been shown to inhibit both Gram-positive and Gram-negative bacteria [57]. 

Furthermore, the bile acid hydrophobicity was directly related to toxicity to bacteria. 

Oxidized bile acids, such as 7-oxo-cholic acid, has also been shown to be potentially 

bacteriocidal [ 1 69]. The production of secondary bile acids, then, may be involved 
, 

in determining the composition of the autochthonous intestinal flora. Moreover, the 

presence of these compounds may be an important mechanism for the exclusion of 

pathogens from the intestinal tract. 

The importance of these biotransformations to the bacteria which perform 

them are not precisely clear. It  has been shown that the bile acid modifications 

performed by the intestinal anaerobes are anutrient in nature [72]. Some bacteria 

capable of deconjugation, though, could conceivably util ize the liberated amino acids 

as a carbon and energy source. The primary function of these reactions is probably 

to achieve a selective advantage in the competitive environment of the intestinal 
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lumen. The oxjdation and/or epimerization of bile acid hydroxy moieties may also 

ameliorate their relative toxicity to the bacterial flora. The pathway proposed for the 

7a-dehydroxylation of bile acids may be physiologically sigruficant for the bacteria 

carrying out this biotransformation. The two step oxidation, fol lowed by a three step 

reduction, resul ts in the net loss of one reducing equivalent. Therefore, the 3-oxo

.14,6-deoxycholic acid during 7a-dehydroxylation may be thought of as a potential 

electron acceptor for these bacteria. The 7a-dehydroxylation of bile acids may, then, 

provide an alternative to proton reduction via NAD-ferredoxin oxidoreductase and 

hydrogenase, under unfavorable conditions, as described for other anaerobic bacteria 

[33,93]. 



STATEMENT OF PROBLEM AND OBJECTIVES 

Eubacterium sp. VPI 12708 is an anaerobic intestinal bacterium which is 

capable of both oxidizing 7a-hydroxy bile acids to their corresponding 7-oxo-forrns, 

and 7-dehydroxylat ing e ither 7a- or 7,B-bile acids to give rise to secondary bile acids. 

The products of these reactions differ from the parent compounds both with respect 

to physicochemical properties and their physiological effects. However, the 

mechanism for these reactions as well as the identity and properties of the enzymes 

catalyzing them are poorly understood. A pathway for 7a-dehydroxylation of bile 

acids by Eu . sp VPI 12708 i nvolving a two step oxidation, followed by dehydration, 

and a three step reduction has previously been. proposed [27]. Such a scheme evokes 

the presence of at least four or five catalytic activities. Previous studies have also 

identified four cholate-inducible proteins formed by Eu. sp VPI 12708 (23 kDa, 27 

kDa, 45 kDa, and 72 kDa) [ 1 74] .  Additionally, a cholate-i nducible NADH-dependent 

flavin oxidoreductase has been detected in cel l  free extracts and has been partially 

purified [ 108] .  However, despite much effort, i t  has not been possible to assign 

catalytic functions to the cholate-inducible polypeptides. 

The objectives of this study were to: 

1 )  Purify the constitutive 7a-HSDH to electrophoretic homogeneity and 

characterize its physical and kinetic properties. The nature of the 

35 



36 

interaction between the 70:-HSDH and the cholate-inducible 

dehydroxylation system was also to be examined. 

2) Clone the gene for the 70:-HSDH into E. coli and determine if the gene 

product can be expressed in this organism. 

3) Determine the nucleotide and derived amino acid sequence for the 70:

HSDH. Homology to other enzymes was evaluated using computer 

generated searches of protein  data bases. 

4) Purify the cholate-inducible NADH:FOR to electrophoretic 

homogeneity and characterize its physical and kinetic properties. 



EX PERIMENTAL PROCEDURES 

MATERIALS 

Bile Acids: Cholate, Glycocholate, Glycodeoxycholate, Glycochenodeoxycholate, 

Glycoursodeoxycholate, Taurocholate, Taurodeoxycholate, Taurochenodeoxycholate, 

Tauroursodeoxycholate, 3-Deoxycholate, Tauro-3-Deoxycholate, 12-oxo-cheno

deoxycholate were purchased from Calbiochem (San Diego, CA). 7,B-methyl-cholate 

and 7,B-methyl-chenodeoxycholate were generous gifts from E. H. Mosbach. All other 

bile acids were purchased from Steraloids (Wilton, NH). 

Radiochemicals: Radiolabelled nucleotides, y�32p_A TP, a_32p_CTP, and ,a-3.5S-dATP 

were obtained from New England Nuclear (Boston MA). 

Enzymes: Bacteriophage T4 polynucleotide kinase and ligase were purchased from 

Bethesda Research Laboratories (Gaithersburg, MD). Bovine pancreatic DNase was 

obtained from Sigma Chemical Company (St. Lou is, MO). AMY reverse 

transcriptase, Sequenase and the 35S-sequencing kits were obtained from United 

States Biochemical Corp. (Cleveland, OH). The restriction endonucleases used in 

this study were purchased from either BRL, Pharmacia (Piscataway, NJ), or 

International Biotechnologies Incorporated (New Haven, CT). 

Chemicals and Other Supplies: The following materials were obtained from the 

37 
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indicated sources. DTT, phenyl sepharose CL-4B, sepharose CL-6B, reactive red 

120-agarose, acriflavine agarose, NAD-agarose attached either at C-8 or the ribose 

hydroxyls, reactive blue 4 agarose, reactive blue 72 agarose, reactive brown 10 

agarose, reactive green 5 agarose, reactive green 19 agarose, reactive yellow 3 

agarose, reactive yellow 86 agarose, native molecular mass standards, NAD + , NADH, 

NADP\ NADPH, FAD, EDTA, EGTA, iodoacetate, iodoacetamide, NEM, PMS, 

and NBT were purchased from Sigma. Acriflavine, Rotenone, and N-

bromosuccinamide, were from J. T. Baker (Phill ipsburg, NJ).  Centiprep and 

centricon sample concentration cartridges, and Cibacron Blue A were purchased 

from Amicon (Danvers, MA). DE52 anion exchange resin was bought from 

Whatman (Cl ifton, NJ) .  SDS, glycine, high and low molecular weight, and pre

stained SDS-PAGE size standards, goat anti-rabbit antibodies conjugated to 

horseradish peroxidase, 4-chloro- 1 -naphthol, and nitrocellulose membranes were 

obtained from Biorad (Richmond, CA). XOMAT RP X-ray film, and pyronin Y, 

were from Kodak (Rochester, NY) All other chemicals were of the highest grade 

commercially available. 

Bacterial Strains and Bacteriophage: Eubacterium sp. VPI 1 2708, an original 

intestinal isolate, was obtained from the culture collection of Dr. Phill ip Hylemon. 

The culture was maintained both on chopped meat media under anaerobic conditions 

at 20°C and as 33% (v/v) glycerol stocks of broth cultures at -70°C. Escherichia coli 

strains DH5a, and 1 090r- were obtained from BRL (Gaithersburg,MD) and 

Stratagene (La Jol la, CA), respectively, and maintained on LB plates containing 

appropriate antibiot ics at 4°C. Bacteriophage A gt l l  and was also purchased from 
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Stratagene. Recombinant phage stocks were stored as clarified cell Iysates in the 

presence of a small amount of chloroform at 4°C. 

METHODS 

Bacterial Culture Conditions: Eubacterium sp. VPI 12708 was cultured as previously 

described [ 1 76] except that the growth medium was modified by replacing Brain 

Heart Infusion broth with Tryptic Soy broth (30 gjl). One l iter starter cultures grown 

to late log phase ( 1 6  hr) were diluted with 7 l i ters of fresh media in 8 l iter carboys. 

Bacterial growth was monitored using a Klett-Summerson photoelectric colorimeter 

with a red (number 66) filter. If cultures were to be induced, 0. 1 mM sodium cholate 

was added when the culture turbidity reached 30, 60, 90, and 120 Klett units. Cells 

were harvested by centrifugation (6,000 x g, 4°C, 30 min) when the turbidity reached 

1 75 to 1 80 Klett units. Sixteen l i ters normally yielded 55 g of wet cel l  pellets. The 

cells were stored at -20°C for up to 1 0  days before use with no ill effects. 

Enzyme Assay Conditions: The 7Q-HSDH and NADH:FOR assays were measured 

spectrophotometrically under aerobic conditions at 20°C by monitoring NAD(P)H 

production or util ization at 340 nm using either a Shimadzu UV160U or a Beckman 

model 35 recording spectrophotometer. Assays contained, in a final volume of 1 ml, 

the following: 

7Q-HSDH (direction of bile acid oxidation): Sodium phosphate buffer (pH 

8.5), 1 00 mM; NADP+,  0. 1 mM; cholic acid, 0. 1 mM, and an appropriate 

amount of enzyme. 



40 

7a-HSDH (direction of bile acid reduction): Sodium phosphate buffer (PH 

6.0), 100 mM; NADPH, 0 . 1  mM; 7-oxo-cholic acid, 0. 1 mM, and an 

appropriate amount of enzyme. 

Escherichia coli 7a-HSDH assay: The NAD(H)-dependent 7a-HSDH activity 

of E. coli was assayed as previously described [ 143]. The assays contained 

sodium phosphate buffer (pH 8.0), 100 mM; NAD+ ,  1 .7 mM, cholic acid, 1 .0 

mM and an appropriate amount of enzyme. 

NADH:FOR: Sodium phosphate buffer (pH 6.8), 1 00 mM; NADH, 0. 15 mM; 

FAD, 0. 15 mM; and an appropriate amount of enzyme. 

Activities were based upon a molar extinction coefficient of 6.22 x 103 M·l . cm·l for 

NAD(P)H. 

Preparation of Cell Free Extract: Frozen cell pellets were resuspended in 20 ml of 

solution A (25 mM sodium phosphate (pH 6.8), 5% (v/v) glycerol, and 1 mM Orr) 

and disrupted with two passages through a French pressure cel l  ( 10,000 pSI) at 4°C. 

Bovine pancreatic DNase I (approx 1 mg) was added between the two passages. 

Unbroken cells and cell debris were removed by centrifugation ( 105,000 x g, 4°C, 1 20 

min). The resulting supernatant was collected and dialyzed using cellu lose dialysis 

tubing ( 12,000 to 14,000 MW cut off; American Scientific Products, McGraw Park, 

IL) against 4 liters of solution A for 16 hr. 

Pur i fication of the 7a-HSDH: Unless otherwise noted, all purification steps were 

performed aerobically at 4°C. Protein  concentrations were determined using e ither 

the dye-binding assay of Bradford [20], or approximated using the spectrophotometric 

method of Kalb and Bernlohr [94] .  Total protein elution profiles for each 
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chromatographic separation were obtained by measuring the absorbance at 280 nm 

for each collected fraction. The 7a-HSDH activity was measured in  the direction of 

bile acid oxidation. 

Step 1 :  

Step 2: 

Step 3 :  

DEAE-Cellulose Chromatography: DE-52 (40 g) was equil ibrated with 

solution A giving a column of 2.5 x 20 cm. Dialyzed cel l  free extract 

was loaded onto the column at a flow rate of 1 .2 ml/min. The column 

was then washed with 50 ml of solution A, Bound protei ns were 

eluted with a 400 ml l inear, increasing NaCI gradient (0 to 500 mM in 

solution A). Fractions were collected at  4 min i ntervals. 

Phenyl Sepharose Chromatography: Pooled DE-52 fractions were 

placed i n  a 250 ml beaker with a sufficient amount of solid ammonium 

sulfate to bring the solution to 30% saturation. This solution was 

stirred for 45 min at 4°C while the pH was maintained at 6.8 with the 

addition of 1 N ammonium hydroxide. The proteins were then loaded 

onto a phenyl sepharose column ( 1 .5 x 20 cm) which was previously 

equi l ibrated with solution A containing ammonium sulfate at 30% 

saturation. The column was then washed with 50 ml of the 

equil ibration buffer. Bound proteins were eluted with a 150 ml l inear, 

decreasing gradient of ammonium sulfate (30% to 0% saturation) at 

a flow rate of 1 ml/min. Fractions were collected at 5 mjn intervals. 

Reactive Red-A Affinity Chromatography: Pooled phenyl sepharose 

fractions were placed in a 50 ml beaker and brought to pH 8.5 with the 

addition of 0. 1 N NaOH. The proteins were then directly loaded onto 
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a reactive red 120 agarose column ( 1  x 3 cm) previously equi l ibrated 

with solution B (25 mM sodium phosphate (pH 8.5), 5% (v/v) glycerol, 

1 mM DTT) at 20°e. Unbound proteins were removed by washing the 

column with 5 bed volumes of solution B. Loosely associated proteins 

were e luted with 5 bed volumes of solution B containing 250 mM 

NaCI. Specific elution of the 7a-HSDH was effected using 2 bed 

volumes of solution B containing 250 mM NaCI and 10 mM NADP+ .  

The flow rate for loading and all washes was 1 .5 ml/min, with fractions 

collected at 1 min i ntervals. 

DEAE-HPLC Chromatography: Pooled reactive red fractions were 

concentrated to approx 5 ml using a centriprep 1 0  cartridge (Amicon; 

Danvers, MD). Salt and NADP+ were removed with 3, 10 ml washes 

of solution C (25 mM sodium phosphate (pH 7.5), 5% (v Iv) glycerol, 

and 1 mM DTT), re-concentrating as above between wash-es. The 

equi l ibrated protein sample was appl ied to a pre-equi l ibrated 

Spherogel DEAE-3SW HPLC column (Beckman; Fullerton, CA), at a 

flow rate of 0.4 ml/min. The flow rate was i ncreased to 0.85 ml/min 

when sample appl ication was completed. Bound proteins were eluted 

with the following NaCl gradient in solution C; 0 to 1 00 mM NaCl in 

10  min,  1 00 to 300 mM NaCl in 80 min, and 300 to 500 mM NaCI in 

10  min .  Fractions were collected at  1 min intervals. The protein 

elution profile was continuously monitored at  280 nm using a Beckman 

1 64 variable wavelength detector. 
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Purification of the NADH:FOR: Unless otherwise noted all purification steps were 

performed aerobically at 4°C. The methods for protein  determination and enzymatic 

assay of NADH:FOR are described above. 

Step 1 :  DEAE-Cellu lose Chromatography: A Whatman De-52 column was 

prepared and run exactly as described above. 

Step 2: 

Step 3: 

Reactive Red A Affinity Chromatography: Pooled DE-52 fractions 

were concentrated and desalted using a Centriprep 10 cartridge and 

described previously. The sample's pH was then brought to 8.5 and 

the proteins were loaded and eluted from the reactive red agarose 

column as above. The eluted 7o:-HSDH was saved for further 

purification and characterization studies. 

Cibacron Blue A Affinjty Chromatography: The load ing eluate 

(unbound proteins) from the reactive red agarose was collected and 

the pH adjusted to 7.0 by the addition of 0. 1 N HC!. This solu-tion was 

then loaded onto a Cibacron blue A (Amicon, Danvers, MD) column 

( 1 .5 x 10  cm) which was equil ibrated with solution D (25 mM sodium 

phosphate buffer (pH 7.0), 5% (v Iv) glycerol, and 1 mM DTT). Due 

to relatively poor binding of the NADH:FOR to this resin, multiple 

applications of the protei n  samples were necessary to achieve an 

acceptable recovery. This was accomplished by collecting the column 

eluate and re-applying i t  to the column an addi tional five times. After 

six total applications 75 to 80% of the originally detectable activity had 

been sequestered by the column. The column was then washed with 
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15 bed volumes of solution 0 to remove any unbound protein. Bound 

proteins were eluted with solution 0 containing 1 M KCI. All flow 

rates were about 1 .0 mljmin and fractions were collected at 4 min 

intervals. 

DEAE-HPLC Chromatography: The pooled Cibacron blue A fractions 

were concentrated and desalted with solution 0 using a Centriprep 10  

cartridge as  described above. The equi l ibrated protei ns were then 

loaded onto a Beckman Spherogel DEAE-3SW column and eluted as 

described above, except that the column was equil ibrated with solution 

o (pH 7.0) instead of solution C (pH 7.5). 

Phenyl-HPLC Chromatography: Pooled DEAE-HPLC fractions were 

placed in a 250 ml beaker at 4°C and 20% (w jv) solid ammonium 

sulfate was added. The pH of the solution was maintained at 7.0 by 

the addition of 1 N ammonium hydroxide. The protein  sample was 
-

then loaded at a flow rate of 0.4 mljmin onto a Spherogel Phenyl-5PW 

column (Beckman, Fullerton, CA) which had been equil ibrated with 

solution 0 containing 20% (wjv) ammonium sulfate. After sample 

application was complete, the flow rate was i ncreased to 1 .0 mljmin. 

Bound proteins were eluted with a 40 min l inear, decreasing 

ammonium sulfate gradient (20% (wjv) to 0%). The column was then 

washed for additional 10 min with solution 0 (no ammonium sulfate) 

to assure complete elution of most proteins. The NADH:FOR was 

then eluted by injecting 1 .0 ml of solution 0 containing 1 0% (v jv) 
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ethanol over the column at a flow rate of 1 .0 mJ/min. Fractions were 

collected at 1 .0  min intervals. 

Electrophoresis Conditions: Slab gel sodium dodecyl sulfate polyacrylamide gel 

electrophoresis was performed at 20°C at a constant current of 1 .5 mAl cm as 

described by LaemmJi [ 105], except that 5% acrylamide stacking and 12% acrylamide 

separating gels were used. Gels were run until the bromphenol blue tracking dye 

reached the bottom of the separating gel (approx 3.5 hr). Proteins were visualized 

by stai ning with Coomassie R-250 in ethanol :acetic acid:water (25 :7:68) for 2 hr. The 

gels were destained with the same solvent system without the Coomassie dye. 

Native gel electrophoresis was performed in 7% acrylamide slab gels at 4°C 

using the buffers of Laemmli [ 1 05] except that SDS was omitted from all solutions. 

The tracking dye solution was also modified by the deletion of 2-mercaptoethanol. 

Protein samples were not boiled prior to loading onto the gel .  Gels were run, and 

proteins were stained as described above. Activity stains for the 7a-HSDH and 
-

NADH:FOR were derived from that for other oxidoreductases [ 153]. The 7a-HSDH 

activity stained contained: 1 00 mM sodium phosphate buffer (pH 8.5), 1 mM cholic 

acid, 1 mm NADP+ ,  0.3 mg/mJ NBT, and 0.02 mg/mJ P MS. The NADPH generated 

by the 7a-HSDH reduces the PMS, which in turn reduces the NBT dye to form a 

dark blue precipitate. The NADH:FOR activity stain contained: 1 00 mM sodium 

phosphate buffer (pH 6.8), 0. 1 5  mM NADH, 0. 1 5  mM FAD, and 0.3 mg/ml NBT. 

Note that there is no PMS in this activity stain (since NADH is used, the presence 

of PMS would turn the entire gel blue). In this case the NADH:FOR uses the 

NADH to reduce FAD which in  turn may reduce the NBT dye directly to form a 
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dark blue precipitate. 

Native Molecular Mass Determinations: A sepharose CL-6B gel filtration column 

(2.5 x 75 cm) was equil ibrated with solution A containing 1 00 mM NaCI at a flow 

rate of 0.5 mljmin. The column void volume (Yo) was determined, as judged by the 

elution of blue dextran 2000, to be 153 m\. The column was calibrated using 

apoferritin (443 kDa), {3 amylase (200 kDa), alcohol dehydrogenase ( 150 kDa), 

albumin (66 kDa), carbonic anbydrase (29 kDa), and cytochrome C ( 12.4 kDa). A 

standard curve was obtained by plotting the log of molecular mass vs. relative elution 

volumes (Ye jYo) as previously described [7, 1 73]. Purified 7a-HSDH and 

NADH:FOR were chromatographed as above, and their native molecular mass 

estimated from the standard curve. 

Characterization of Substrates and Inhibi tors: Bile acid substrates and cofactors for 

the 7a-HSDH were screened at 1 mM final concentrations i n  the d irection of bile 

acid oxidation or reduction as appropriate. Reactions were performed in triplicate 

and quantitated spectrophotometrically as described above. 

Putative enzyme inhibitors were added to purified proteins in the assay buffer 

and allowed to i ncubate for 10  min at 20°C. Reactions were init iated with the 

addition of substrate. Percent inhibition of control activity was calculated from the 

average of three i ndependent determinations. 

Determination of Apparent Kinetic Constants: Kinetic constants were derived for 

the purified proteins using initial velocity saturation kinetics. While maintaining one 

substrate concentration at a constant value, the other substrate concentration was 

varied. A series of saturation curves at different constant substrate concentrations 
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were obtained i n  this manner. Primary plots of these data were generated using the 

method of Hanes [66]. Secondary plots using the apparent K"" and V max values 

derived from the primary plots ( [NADP+ ]/Vmax vs. [NADP+ ]  and [NADP+ ] ·K",/Vmax 

vs. [NADP+ ] )  were made as described [29]. Unweighted first order l inear regressions 

were used to calculate all plotted values. To compare the apparent kinetic constants 

for various substrates (bile acids or flavin compounds) the pyridine nucleotide 

cofactor concentration was maintained in great excess ( 1 00 x K",) while the bile acid 

or flavin concentrations were varied. At least five points, each the mean of three 

independent determinations, were used for each plot. 

Product inhibition patterns were obtained for the 7Q-HSDH by determining 

substrate saturation kinetics as above, i n  the presence of different constant 

concentrations of each end product. The primary plots were generated using the 

method of Hanes [66], and the inh ibition patterns were evaluated (eg. competitive, 

non-competitive, or un-competitive). 

Amino Terminal Amino Acid Sequence Determination: The purified proteins 

(approx 1 nrnol) were extensively dialyzed against HPLC-grade water (Altech, 

Deerfield, IL) and concentrated to 200 ILl using a 2 ml centricon- IO  concentrator 

(Arnicon, Danvers, MA). The N-terminal amino acid sequences were determined by 

Dr. Bryan White in the Department of Animal Sciences, University of Il l inois, 

Urbana-Champaign using an Applied Biosystems gas phase amino acid sequenator. 

Generation of Polyclonal Antibodies: White, New Zealand male rabbits (2 kg) were 

obtained from Blue and Gray Rabbitry and housed in MCV animal resources 

facil it ies. A 20 ml sample of pre-immune blood was drawn from the ear, and the 
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serum was collected and saved at -20°C. The animals were initially challenged by 

injecting 1 00 J..Lg of purified protein, in  Freunds Complete adjuvant, i.m. i nto the thigh. 

The antibody titer was boosted with two subsequent injections of 1 00 J..Lg of protein 

i n  Freunds Incomplete adjuvant at 3 week i ntervals. Immune serum was collected 

1 week after the second boost. After it was ascertained that the antibody titer was 

sufficiently high, the animals were sacrificed by exsangui nation, the immune serum 

collected, and stored at -20°C for further use. 

Western Blot Analysis: Protein samples were loaded and run on 12% SOS-PAGE 

slab gels as described above, except that 0.01 % (w Iv) pyronin Y was added to each 

sample to act as a lane marker. Prestained molecular mass markers were used for 

size determinations. The proteins were e lectrophoretically transferred to a nylon 

membrane. The rabbit polyclonal antisera were uti l ized as the primary antibody, 

while goat anti-rabbit antiserum conjugated to horse radish peroxidase was used as 

the secondary antibody. Bound anti-rabbit antibodies were visualized using 4-chloro

I -naphthol in the presence of 0. 15% hydrogen peroxide. 

Immunoinhibition Studies: The purified proteins were placed in  assay buffer in  the 

presence of different volumes pre-immune or immune sera. The mixtures were 

allowed to incubate for 15 min at 20°C. Enzymatic reactions were init iated with the 

addition of substrate, and quantitated spectrophotometrically as described above. 

Controls reactions with no additions were also performed. No 7a-HSOH or 

NADH:FOR activity was detected in the rabbit sera used. Ochterlony plates were 

prepared as previously described [ 136] . The center wells contained 1 00 J..L l of serum 

while the test wells contained 4 mg of cholic acid-induced or uninduced cell-free 
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extract or 20 Ji.g of purified NADH:FOR. 

Generation of Restriction Maps: Total chromosomal DNA from Eu . sp. VPI 12708 

was purified as previously described [ 1 22]. The DNA ( 10 Ji.g) was treated with 

restriction endonucleases according to the manufacturer's specifications. The 

digested DNA was then separated by electrophoresis on 0.8% (w Iv) agarose gels in  

TAB buffer [ 1 1 ] .  Synthetic oligonucleotides, synthesized by the Molecular Biology 

Core Facil ity, were radiolabelled using 32p_A TP and T4-polynucleotide kinase. The 

DNA was then either transferred to a nylon membrane by the method of Southern 

[ 1 62], and probed with the labelled oligonucleotide, or probed in situ after drying the 

gel [ 1 1 ] .  The size of the hybridizing fragments was estimated from their migration 

relative to that of 1 kb ladder markers. Double digests using various restriction 

enzymes were used to order the fragments and to generate a rough, chromosomal 

restriction map. 

Clonin& of the 7a-HSDH: Chromosomal DNA from Eu. sp VPI 1 2708 was aigested 

to completion with EcoRJ and size fractionated on a 0.7% agarose gel .  Fragments 

from 5 to 7 kb were excised from the gel and purified using a Qiagen kit (Dusseldorf, 

FRG) as described by the manufacturer. The purified fragments were then ligated 

to pre-digested Agt 1 1 DNA. Recombinant bacteriophage DNA was then packaged 

using GigaPack Gold kit as described by the manufacturer. The phage were plated 

on E. coli strain Y 1 090r- and screened with a synthetic oligonucleotide probe. 

Several putative positive clones were plaque purified and one of these Agt l l l + was 

characterized further. This clone possessed a 6 kb EcoRJ insert from Eu. sp VPI 

12708. The EcoRJ insert could not be efficiently excised from Agt l l 1 + .  Therefore, 
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a 3.8 kb Kpn!-Pstl fragment was excised from this clone and purified as described 

above. This fragment, which contains approx 2.9 kb of Eu. sp. VPI 12708 DNA and 

0.9 kb of Agt 1 1  DNA, was ligated to pUC1 9  previously digested with EcoRI and Pst!. 

The resulting clone, termed pBH5 1 ,  contained the entire open reading frame for the 

7a-HSDH along with the putative transcriptional promotor and terminator regions. 

Sequencing the 7a-HSDH Gene: Qiagen purified plasmid DNA from pBH5 1 was 

used as a template for dideoxy-termination reactions using the method of Sanger 

[ 149]. The sequencing reactions were performed using Sequenase, essentially as 

described by the manufacturer. The synthetic oligonucleotide probe, 32-2, was used 

as the initial sequencing primer. After termination and denaturation of the reactions, 

the samples were run on 8% acrylamide sequencing gels in the presence of urea (45 

cm x 0.25 mm to 0.5 mm wedge gels). The gels were then dried and exposed to 

XOMAT type RP fi lm (-70°C for 24 to 72 hr). Beginmng from this sequence, the 

entire gene encoding the 7a-HSDH along with the 5' and 3' non-coding regIons was 

then determined by walking upstream and downstream using new synthetic 

oligonucleotides, complementary to the known sequence, as primers. All sequences 

were read manual ly, and the sequence for each position was determined for both 

DNA strands. 

Northern Blot Analysis: The 0.9 kb BglI I fragment, which comprises approx. 90% of 

the 7a-HSDH coding region was excised from pBH5 1 ,  purified using a Qiogen 

column, and nick translated using a Nick Translation System from BRL 

(Gaithersburg, MD) and [a_32P]_dCTP. Total RNA was isolated from E. coli and 

uninduced and cholate-induced cultures of Eu. sp VPI 12708 as previously described 
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[ 1 02]. The RNA samples were subjected t o  electrophoresis o n  a 1 % agarose i n  the 

presence of formaldehyde [ 1 1 ] .  After capil lary transfer of the RNA to a nylon 

membrane, the samples were probed with the labelled restriction fragment as 

described elsewhere [ 1 1 ] .  Hybridized probe was detected by autoradiography using 

Kodak XOMAT type RP fi lm. 

Primer Extension Analysis: Total RNA was isolated from E. coli and Eu. sp. VPI 

1 2708 as described above. A synthetic oligonucleotide primer, the reverse 

complement to the first 30 nucleotides of the 7a-HSDH open reading frame was 5' 

end labelled with 32p using T4 kinase, and annealed to the mRNA. The primer was 

then extended using AMV reverse transcriptase as described previously. The primer 

extension products were run on sequencing gels, with sequence reactions acting as 

a sizing ladder, as described above. 

Protein and DNA Sequence Analysis: Protein  and DNA sequence analysis was 

performed using the University of Wisconsin Genetics Computer Group programs 

(UWGCG) [35] installed on the VAX cluster at the MCV computer resources center. 

Computer assisted searches of the NBRF and Swiss Protein data banks for sequence 

to the derived amino acid sequences for the purified protein  (and also the entire 

translated open reading frame for the 7a-HSDH) were performed with FASTA using 

the wordsearch algorithm of Wilbur and Lipman [ 140]. Al ignments of 7a-HSDH with 

other polyoljdehydrogenases were accomplished using the GAPS program, using the 

algorithm of Needleman and Wunsch [ 132], with a gap width of 3.0 and a gap weight 

of 0. 1 .  A growing consensus sequence was generated by comparing the 7a-HSDH 

sequence with the 27- 1 sequence. The resu lting gapped consensus sequence was 
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compared to the 27-2 sequence, and a new gapped consensus was generated. This 

process was repeated, sequential ly, for the sequences of a 20,B-HSDH, 17,B-HSDH, 15-

hydroxyprostaglandin dehydrogenase, the two glucose dehydrogenases, ribitol 

dehydrogenase, and Drosophila alcohol dehydrogenase. The resulting, maximally 

gapped, consensus sequence was used to align each of the original sequences 

individually. The alignment metrics were noted, as they indicate the quality of the 

match between the 7a-HSDH and the other sequences. The gapped alcoholjpolyol 

sequences were then displayed using LINEUP. The consensus sequence for all ten 

al igned sequences was calculated using PRETfY. The COMPARE program, using 

the method of Maizel and Lenk [ 19] ,  was also used to search for conserved areas 

between the proteins (using a window of 2 1  and a stringency of 12) .  This data was 

displayed using the DOT PLOT program. The secondary structure of the 3', putative 

terminator region was calculated using the FOLD program which uses the method 

of Zuker [ 1 82]. The calculated structure was then displayed using SQUIGG LES. 



RESULTS 

Purification of the 70:-HSDH: Sixteen l iters of Eubacterium sp. VPI 12708 yielded 

greater than 500 units of 70:-HSDH activity, with a specific activity of 0.3 1 units/mg 

protein.  Purification to apparent electrophoretic homogeneity was achieved using 

four chromatographic steps, and is summarized i n  Table 1 .  An overall purification 

of over 1200-fold with greater than a 30% recovery of detectable units was routinely 

obtained. The 70:-HSDH eluted as a single symmetrical peak from all purification 

steps (Figures 9- 12) .  The key steps in the purification were phenyl-sepharose (Figure 

10) and reactive red agarose (Figure 1 1 ) chromatography. The phenyl-sepharose 

column gave a purification factor of 5.5-fold with a recovery of 86%. The best step, 

however, was reactive red agarose which produced a 65-fold purification with a 64% 

recovery of loaded units. In later purification attempts, it was found to be possible 

to omit the phenyl sepharose step with no apparent effect to final enzyme purity or 

specific activity. The overall yield, however, increased to 40 to 45%. 

A1iquots from each step of the purification scheme were subjected to SDS

PAGE as a means of assessing the purity of the enzyme preparation. After DEAE

HPLC, the 7Q-HSDH appeared as a single band on Coomassie stained gels (Figure 

13) .  A subunit molecular mass of 3 1  kDa was estimated, based upon the migration 

of several molecular mass standards. Additionally, gel fi ltration of the purified 70:-
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TABLE 1 :  Purification of the 7a-HSDH. 

The purification was performed using 55 g of cells (wet pellet weight). Details of the purification procedure are given 
in the Methods section. All enzymatic activities were determined in the direction of cholate oxidation. 

Specific 
Purification Step Volume Protein Act ivity Activity Purification Yield 

ml mg Units · Units/mg Fold Percent 

Cell Free Extract 55.0 1820. 561 .0 0.3 1 1 .0 100 

DE-52 94.0 5 18. 384.5 0.74 2.4 69 

Phenyl Sepharose 15 .5 82.0 332.2 4 . 1  13 59 

Reactive Red 120 9.0 0.80 2 12. 1 265 854 38 

DEAE-HPLC (pH 7.5 ) 9.5 0.45 1 76.7 393 1267 32 

a One unit of activity is defined as 1 J..Lmol of NADPH produced/min/mI. 
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FIGURE 9: 7a-HSDH DEAE-Cellulose Elution Profile. Cell free extract ( 1 .8 g) 
was loaded onto a pre-equil ibrated DE-52 column. Bound proteins were eluted with 
an increasing NaCI gradient at a flow rate of 1 mljmin. 
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FIG URE 10: 7Ct-HSDH Phenyl Sepharose Elution Profile. Following addition of 
solid ammonium sulfate, the pooled DE-52 fractions were loaded onto the column, 
previously equil ibrated with solution A containing ammonium sulfate at 30% 
saturation. Proteins were eluted with a decreasing ammonium sulfate gradient. 
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FIGURE 1 1 : 7a-HSDH Reactive Red A Agarose Elution Profile. Pooled and 
equilibrated phenyl sepharose fractions were applied to a reactive red 120-agarose 
column which had been equilibrated with solution B. Specific elution of the 7a
HSDH was achieved using 250 mM NaCl and 10 mM NADP+ .  
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FIGURE 1 2: 7a-HSDH DEAE-HPLC Elution Profile. Pooled red 120-agarose 
fractions were equil ibrated with solution C and appl ied to a DEAE-3SW column. 
Bound proteins were eluted with an increasing NaCl gradient. The total prote in 
elution profile was conti nuously monitored at 280 nm using a variable wavelength 
detector. 
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FIG URE 13:  SDS-PAGE of Protein Aliquots from the Purification of the 7a-HSDH. 
Aliquots of the 7a-HSDH at each stage of purification were subjected to 
electrophoresis using a 12% acrylamide slab gel. Lanes contained the fol lowing: 
M: Biorad Low Molecular Weight Markers, 1 :  Cel l  Free Extract (50 J.1,g), 2: Pooled 
DE-52 Fractions (40 J.1,g), 2:  Pooled Phenyl Sepharose Fractions (35 J.1,g), 4:  Pooled 
Reactive Red A Fractions ( 1 0  J.1,g), Pooled DEAE-HPLC Fractions ( 10 J.1,g). The 
molecular mass of the size standards are given ·in the left margin. 
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HSDH using a calibrated sepharose CL-6B column gave a single symmetrical peak 

of protein which corresponded to 7a-HSDH activity. The native molecular mass of 

this enzyme was estimated to be 124 kDa, suggesting that it exists as a tetramer of 

identical subunits (Figure 14) .  

The purified protein  was also shown to be very stable to long term storage. 

Stock solutions of 50 J.Lg/ml stored in solution A were frozen at _20DC for over 4 

months with no detectable loss of enzymatic activity. Working solutions ( 1  J.Lg/ml) 

retained greater than 80% activity when stored in  solution A at 4DC for up to 1 week. 

Bile Acid Substrate and Pyridine Nucleotide Cofactor Specificity of the 7a-HSDH. 

Substrate util ization studies revealed that the purified 7a-HSDH was extremely regio

and stereo-specific in the oxidation of the 7a-hydroxy moiety (Table 2). This is 

demonstrated by the lack of activity with bile acids lacking a 7a-hydroxy group 

(deoxycholic acid, and hyodeoxycholic acid), or possessing a 7/3-hydroxyl group 

(ursocholic acid, and ursodeoxycholic acid). Moreover, bile acids which co-ntained 

7a-hydroxy groups hindered by the presence of a 7/3-methyl group also failed to act 

as substrates for this enzyme. The presence of either a 6a-hydroxy (hyocholic acid) 

or a 12-oxo ( 12-oxo-cholic acid) group greatly diminjshed, but did not totally prohibit 

enzymatic activity. In contrast, the presence of a 3-oxo moiety (3-oxo-chol ic acid) 

essentially abolished activity. Interestingly, a wide variety of substitutions at C-24 

were tolerated by the 7a-HSDH. Both glycine and taurine conjugates of 7a-hydroxy 

bile acids were uti l ized as substrates. However, the conjugates were not used with 

equal effectiveness. Activities measured using glycine or taurine conjugates were 

approx 68% and 50% that detected using unconjugated bile acids, respectively. 
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FIG URE 1 4: Gel Fil tration Elution Profile and Native Molecular Mass Estimation 
of the Purified 7a-HSDH. Purified 7a-HSDH (40 JJ.g) was chromatographed on a 
sepharose CL-6B column equil ibrated with solution A conta ining 1 00 mM NaCl, and 
its relative elution volume was calculated. 

Inset: A molecular mass standard curve was generated from the LoglO 
molecular mass vs. the relative elution volumes (Ve/V 0) of several standards. 
The proteins used were as follows - A: apoferritin, B: f3 amylase, C: alcohol 
dehydrogenase, D: albumin, E: carbonic anhydrase, F: cytochrome C. The 
fil led triangle represents the 7a-HSDH. 



TABLE 2: Bile Acid Substrate Sl2ecificit;i of the 7a-HSDH. 

Bile Acid Su bstrate 3 

Cholic Acid aOH 

3-Deoxycholic Acid H 

Chenodeoxycholic Acid aOH 

3-oxo-Cholic Acid Oxo 

12-oxo-Chenodeoxycholic Acid aOH 

Hyocholic Acid aOH 

Deoxycholic Acid aOH 

Hyodeoxycholic Acid aOH 

Ursocholic Acid aOH 

Ursodeoxycholic Acid aOH 

7,B Methyl Cholic Acid aOH 

7,B Methyl Chenodeoxycholic Acid aOH 

Positions and Substitutions 

6 7 1 2  

H aOH aOH 

H aOH aOH 

H aOH H 

H aOH aOH 

H aOH Oxo 

aOH aOH H 

H H aOH 

aOH H H 

H ,BOH aOH 

H ,BOH H 

H aOH/,BMe aOH 

H aOH/,BMe H 

24 

COOH 

COOH 

COOH 

COOH 

COOH 

COOH 

COOH 

COOH 

COOH 

COOH 

COOH 

COOH 

Relative 
Activitl:: * 

100 

128 

68 

< 1  

33 

56 

6 

2 

5 

< 1  

2 

1 

0\ 
UJ 



TABLE 2 < CONT > 

Positions and Substitutions 

Relative 

Bile Acid Substrate 3 6 7 12 24 Activity * 

Glycocholic Acid aOH H aOH aOH CO-Gly 68 

Taurocholic Acid aOH H aOH aOH CO-Tau 52 

Glycochenodeoxycholic Acid aOH H aOH H CO-Gly 46 

Taurochenodeoxychol ic Acid aOH H aOH H CO-Tau 33 

Tauro-3-deoxycholic Acid H H aOH aOH CO-Tau 78 

Glycodeoxycholic Acid aOH H H aOH CO-Gly 8 

Taurodeoxycholic Acid aOH H H aOH CO-Tau 3 

Glycoursodeoxycholic Acid aOH H t30H H CO-Gly < 1  

Tauroursodeoxycholic Acid aOH H t30H H CO-Tau 3 

7 -oxo-Cholic Acid * * aOH H Oxo aOH COOH 60 

7 -oxo-Chenodeoxycholic Acid * * aOH H Oxo H COOH 57 

7, 12-Di-oxo-Cholic Acid * * aOH H Oxo Oxo COOH 42 

* Values were normalized by setting activity assayed with cholate (40 1 /-Lmol/min/mg) to 100. 

* * Reaction performed in the d irection of bile �cid reduction. 0\ 
""" 
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Cholic acid and chenodeoxycholic acid possessing an amide, methyl ester, or hydroxy 

group at C-24 uti l ized as substrates (data not shown). 7a-hydroxycholesterol was not 

a substrate for this enzyme under the conditions examined. Due to the l imited 

solubility of these steroids in aqueous solutions, these reactions were not quanti tated 

spectrophotometrically. Attempts to solubilize the derivatives using 

dimethylsulfoxide, ethanol, and methanol all resulted in the inactivation of the 7a

HSDH activity at greater than 5% (v Iv) final concentrations. Therefore, substrate 

uti l ization was scored as either positive or negative by 7-oxo product formation, as 

detected by TLC or Gc. The purified enzyme was highly specific for NADP(H), as 

no act ivity was detected using NAD(H) under the conditions employed (Table 3). 

Apparent Kinetic Constants for the Purified 7a-HSDH: Initial velocity kinetic studies 

were performed, using the purified enzyme, for both bile acid substrates and pyridine 

nucleotide cofactors in  the oxidative and reductive directions. Primary and secondary 

Hanes plots were used both to derive kinetic constant values for NADP(HY, cholic 

acid, and 7-oxo-cholic acid (Figure 7B, and 7C), and to examine the reaction 

mechanism (Table 4). Apparent kinetic constants were also determined under 

saturating conditions to compare different substrates (Table 3). The affinity of the 

7a-HSDH for most bile acids was very high; most Km values ranged from 4 to 20 J..LM,  

the exceptions being hyocbolic acid (49 J..LM), and 3- and 12-oxo bi le  acids (854 J..LM 

and 208 J..LM, respectively). The V max values generally reflected the relative activities 

determined in Table 2. The V max I� values did not vary substantially for most 

substrates examined (56. 1 ± 7.8). However, the value determined for 

chenodeoxycholic acid was significantly higher, while those for hyochol ic acid, and 
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Figure 1 5 :  Hanes Plots of 7a-HSDH Saturation Kinetics. Saturation kinetics were 
performed as described in the Methods section. An example of typical results is 
i l lustrated above. 

A: Primary plots of cholate saturation kinetics at different constant 
concentrations of NADP+ .  The concentrations of NADP+  used were: 

(e) 5 �M, (A) 10 �M, ( .) 20 �M, (�) 40 �M, (.) 60 �M.  

B :  Secondary plot of  [NADP+ ]/V max vs. [NADP+ ] .  The slope of the line is 
equal to l /V max' and the x-intercept is _�NADP. 

c: Secondary plot of [NADP+ ]  . �/V max vs. [NADP+] .  The slope of this 
plot is equal to Kmcholate, and the x-intercept is _KjC

holate . KmNADP /�cholate. 
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TABLE 3: Apparent Kinetic Constants for the Purified 7Q-HSDH. 

Variable S ubstrate a V max V maJK m 

jI.mol/min/mg (jI.mol/min/mg)/1LM 

Cholic Acid 1 1 .0 60 1 54.6 

Chenodeoxycholic Acid 5.6 468 83.6 

3-Deoxycholic Acid 18.7 907 48.5 

3-oxo-Cholic Acid 854.0 84 0. 1 

1 2-oxo-Cholic Acid 207.7 303 1 .5 

Hyocholic Acid 49.4 253 5. 1 

Glycocholic Acid 8.8 409 46.5 

Taurocholic Acid 4.5 272 60.4 

Glycochenodeoxycholic Acid 5.5 337 6 1 .3 

Taurochenodeoxycholic Acid 4.7 288 6 1 .3 

Tauro-3-deoxycholic Acid 7.6 466 6 1 .3 

NADP+ 9.0 6 19  68.8 

NAD+ -- No Activity --

7-oxo-Cholic Acid 12.7 674 53. 1 

7-oxo-Chenodeoxycholic Acid 13.9 621 44.7 

7,12-Di-oxo-Cholic Acid 12.2 1 62 13.3 

NADPH 3.0 650 2 16.7 

NADH -- No Activity --

a Bile acid constants were derived with a constant concentration of 100 /-LM NADP+ 
or NADPH. Pyridine d inucleotide cofactor constants were determined using a 
constant concentration of 100 /-LM cholate and 7-oxo-cholic acid in the oxidative and 
reductive directions, respectively. 



68 

the 3- and 12-oxo bile acids were significantly lower than this value. The data also 

showed that pyridine nucleotides bound tighter when reduced than when oxidized. 

Substrate i nhibit ion was noted at concentrations above 60 J..LM in the direction of bile 

acid reduction, but were less noticeable in the oxidative direction. Primary Hanes 

plots of substrate saturation, in both the oxidative and reductive directions, resulted 

in a family of l ines i ntersecting to the left of the ordinate (Figure 7 A). Product 

inhibition studies revealed that NADPH exhibited competitive inhibit ion with respect 

to NADP+ ,  and vice versa (Table 4). All other product inhibit ion patterns were 

characteristic of mixed i nhibition when plotted using the method of Hanes. 

Optimizing the pH for 7a-HSDH Catalysis: The effect of pH on enzymatic activity 

in both the direction of bile acid oxidation and reduction was determined over a pH 

range of 4.0 to 12.0 (Figure 16). The optimal pH range for the reduction of 7-oxo

choHc acid was found to be between 5.7 to 6.5. Oxidation of cholic acid by 7a-HSDH 

showed two plateaus of activity at alkal ine pH: A lower, broad plateau occurred 

between pH 7.5 to 9.0, whereas a higher and sharper peak was apparent between pH 

10.5 and 1 1 .5 .  The act ivity was not affected by the buffer systems employed. 

However, 100 mM MOPS buffer at pH 8.0 was found to give 70% inhibit ion of the 

7a-HSDH activity. 

Inhibitors of 7a-HSDH Activity: The effect of various sulfhydryl-reactive and metal 

ion-chelating compounds on 7a-HSDH activity was also evaluated (Table 5) .  The 

enzyme was found to be very susceptible to inactivation by p-CMB and N-bromo

succinamide. Mercuric, zinc, and cupric chlorides were also strongly inhibitory. 

Other sulfhydryl inh ibitors (NEM, iodoacetate, and iodoacetamide) were less 



TABLE 4: Product Inhibition Patterns for the 7a-HSDH. 

Fixed substrates were kept at 20 /.LM for all reactions, while the second substrate concentration was varied from 5 to 60 
/.LM. Products were tested at 25 and 50 /.LM and were compared to water controls. All reactions were performed using 
20 ng of purified 7a-HSDH. The inhibition patterns were discerned using Hanes plots. 

Variable Substrate Fixed Su bstrate Product I n h i bition Pattern 

Oxidative Reactions 

NADP+ Cholic Acid NADPH Competitive 

NADP+ Cholic Acid 7-oxo-Cholic Acid Mixed 

Cholic Acid NADP+ ' NADPH Mixed 

Cholic Acid NADP+ 7-oxo-Cholic Acid Mixed 

Reductive Reactions 

NADPH 7-oxo-Cholic Acid NADP+ Competitive 

NADPH 7-oxo-Cholic Acid Cholic Acid Mixed 

7-oxo-Cholic Acid NADPH NADP+ Mixed 

7-oxo-Cholic Acid NADPH ' Cholic Acid Mixed 

0\ 
'D 
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FIG URE 16: Optimization of pH for the Activity of the Purified 7a-HSDH. All 
assay buffers were used, at a final concentration of 1 00 mM, over the pH ranges 
indicated. The pH determjnations were made immediately following the completion 
of the 7a-HSDH activity assays. 
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TABLE 5: Effect of  Sulfhydryl-Reactive and Metal-Chelating Compounds on 70.
HSDH Activity. 

Purified protein (20 ng) was pre-incubated with the indicated amount of a putative 
inh ibitor for 10 min at 20°C in 100 mM Tris . HCl (pH 8.0). All reactions were 
performed in the direction of cholate oxidation as described in the Methods section. 

Inhibitor a Final Concentration (mM) % Inhibition b 

p-CMB 0.5 100 

HgCl2 5.0 100 
2.5 74 

ZnCl2 5.0 76 
2.5 3 1  

CuCl2 5.0 100 
2.5 58 

NEM 10.0 88 

Iodoacetate 5.0 46 

Iodoacetamide 10.0 10 

N-Bromosuccinamide 0.2 100 

a NaN3, KCN, EDTA, and EGTA did not inhibit 7a.-HSDH activity when present at 
up to 10 mM concentrations. 

b Values are the mean of three independent determinations. 
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effective. Metal ion chelators (EDTA,and EGTA) had no detectable effect upon 7a

HSDH activity under the condit ions employed. 

Use of the Purified 7a-HSDH for the Ouantitation of Bi le Acids: Experiments were 

undertaken to evaluate the uti l ity of the purified 7a-HSDH as an analytical reagent 

for the quantitation of free and conjugated bile acids. Spectrophotometric 

quantitation of NADPH (absorbance at 340 run) generated by the enzyme was found 

to correlate very well with bile acid concentrations ranging from 1 to 100 t.£M (Figure 

17 A). Additionally, the increased sensitivity afforded by spectrofluoremetry allowed 

detection of NADPH produced from free and conjugated bile acid final 

concentrations ranging from 10 nM to 1 t.£M (Figure 1 7B).  

N-Terminal Amino Acid  Sequence Analysis of the 7a-HSDH: The first 22 N

terminal amino acid residues were determined using a gas phase protein sequencer. 

The amino acid sequence displayed a significant homology to several short, non-zinc 

alcoholjpolyol dehydrogenases and a putative, cholate-inducible HSDH from Eu . sp 

VPI 12708 [26] (Figure 18). The best match, however, was obtained with the N: 

terminal amino acid sequence of a 7a-HSDH from Clostridium absonum (Dr. James 

Coleman, personal communication). These proteins exhibited 63.6% identity, with 

conservative changes in amino acid sequence representing another 9%, over the first 

22 residues. The 27-2 sequence, which is thought to be a 3a-HSDH, also showed a 

strong homology (55% identity and 36% similarity) to the N-terminal sequence. 

Cloning the Gene Encoding the 7a-HSDH: Two synthetic oligonucleotides (3 1 - 1  

and 3 1 -2) were created which are complementary to the codons corresponding to a 

portion of the 7a-HSDH N-terminal amino acid sequence (Figure 19A). Using an 
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FIGURE 17: Ouantitation of Free and Conjugated Bile Acids Using the 7a-HSDH. 
The concentrations of glycocholic acid (0) and chenodeoxycholic acid (6) were 
determined spectrophotometrically (A) and spectrofluorometrically (B) as described 
in the Methods section. All determinations were performed in triplicate and the 
average results ± standard deviat ion are plotted. Points were fitted using unweighted, 
first-order l inear regressions (r > 0.995) .  
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FIG URE 18:  N-Terminal Amino Acid Sequence of the Purified 7a-HSDH and 
Homology to Other Alcohol/Polyol Dehydrogenases. The first 22 N-terminal amino 
acid residues of purified 7a-HSDH are i l lustrated. The sequence is aligned with 
several alcoholjpolyol dehydrogenases which belong to a fami ly of short non-zinc 
enzymes. The full names and origins of the enzymes l isted are given in the Table of 
Abbreviations. The I3A denotes a l3-pieated sheet structure which is part of the 
pyridine nucleotide binding domain. 
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FIGURE 19:  Synthetic Ol igonucleotide Probes and Chromosomal Restriction Map 
for the 7a-HSDH. 
The two ol igonucleotide probes, 3 1 - 1  and 3 1 -2, synthesized for Southern analysis are 
i l lustrated in Panel A. The amjno acid sequence that these sequences correspond 
to is shown above the probes. 

The chromosomal restriction map for the 7a-HSDH gene, as deduced from Southern 
analysis, is shown in Panel B. The restriction sites are abbreviated as fol lows: 
P - Pst!, E - EcoRJ, Bg - Bgl1I. The region where the probe is thought to anneal 
is shown as a thicker bar. 
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end-labelled ol igonucleotide probe, (3 1-2), a chromosomal restriction map for the 7a

HSDH gene was generated from Southern blot analysis (Figure 19B). Based upon 

these results a 6 kb EcoRi fragment was chosen to be cloned into the bacteriophage 

vector A gt l l . A 3.8 kb KpnJ-PstJ fragment was subsequently subcloned i nto pUC19 

giving rise to the recombinant plasmid pBH5 1 .  The sequence of over 1300 bp was 

determined from double-stranded DNA sequencing, using the dideoxy chain 

termination method as described i n  the Methods section. The sequence obtained 

contained one open reading frame of 789 bp (extending from residue 23 1 to 1 03 1 )  

which encoded a 266 amino acid polypeptide (Figure 20). The subunit molecular 

mass of this polypeptide was calculated to be 28 kDa, in approximate agreement with 

the size determined from SDS-PAGE. The ami no acid sequenced translated from 

this open reading frame agreed exactly with the 22 residues derived from N-terminal 

sequence analysis of the purified 7a-HSDH. Several regions homologous to the 

canonical E. coli promotor sequence were located 5' to the open reading- frame. 

Possible -35 hexanucleotides begin at residues 57, 106, and 120, whereas the - 1 0  

regions begin at 32, 129, and 143. Each of  these areas matches the consensus 

sequence for E. coli promotors in at least 4 of the six positions and have near optimal 

spacing. A reasonable ribosome binding domain was also located 5' to the open 

reading frame (positions 2 1 8  to 224). Downstream from the 7a-HSDH gene, five 

regions possessing diad symmetry were detected. Using the FOLD and 

SQUIGGLES programs (UWGCG), a complex secondary structure involving all five 

inverted repeats was predicted (Figure 2 1 ). The Gibbs free energy for this 128 

nucleotide structure was calculated to be -50.4 kCal. 
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FIGURE 20: Determination of the 7a-HSDH Gene Sequence :  Approximately 1300 
base pairs of the cloned 3.8 kb KpnI-PstI restriction fragment were sequenced. The 
numbering of the nucleotides begins arbitrarily at the first base sequenced. The 
sequence containing the putative ribosome binding region is shown in bold case 
letters. The deduced amino acid sequence for the 7a-HSDH is shown below the 
sequence in italic case letters. Anllno acids corresponding to the residues 
determined by direct amino acid sequencing are shown as bold and underlined. The 
five sequences containing diad symmetry in the 3' untranslated region are 
underscored with arrows. The transcriptional start site, as determined by primer 
extension analysis i s  denoted by a star and is  label led + 1 .  

. 
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GG CCG GAA TGC AGA AGT TGT CCC TGG CGT TTT TAT 

50 

• 
GAA GGC GAC CGG CAT GAG AT A TTG AAC GAG ACA GAC 

1 00 

• 
CGG GAA CAG GTA TAT GAA GAC CTG TTC CAA TGG A TT 

GAA GAT CAG AAA ATG ACG CAG CAA AA T TAG GAC GCT 

1 50 + 1 

• * 
ATA CTT AAG AAA AGT ATC CGG ATA ATG ATT ACA TGA 

200 

• 
ATA TGA AAG ATA TCT GGA ATA CTA AAA ATA AAT CAT 

250 

• 
ATG GAG GGA TTA CAC ATG AGG' TTA AAA GAC AAA - GTG 

Met Arg Leu Lys Asg Lys Val 

ATT CTG GTT ACA GCA TCC ACC AGA GGC ATT GGC CTG 

lie Leu Val Thr Ala Ser Thr Arg Gly l ie Gly Leu 

300 

• 
GCT ATC GCT CAG GCA TGT GCG AAA GAA GGA GCC AAA 
Ala l ie Ala GIn Ala Cys Ala Lys Glu Gly Ala Lys 

350 

• 
GTC TAC ATG GGC GCC AGG AAT CTG GAA CGC GCC AAG 

Val Tyr Met Gly Ala Arg Asn Leu Glu Arg Ala Lys 
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GCA CGG GCT GAC GAG ATG AAT GCG GCA GGC GGC AAT 

Ala Arg Ala Asp Glu Met Asn Ala Ala Gly Gly Asn 

400 

• 
GTA AAG TAT GTT TAC AAT GAT GCG ACA AM GAA GAG 

Val Lys Tyr Val Tyr Asn Asp Ala Thr Lys Glu Glu 

450 

• 
ACA TAC GTG ACG ATG ATT GAG GAA ATC ATC GAG CAA 

Thr Tyr Val Thr Met lie Glu Glu lie lie Glu GIn 

500 

• 
GAA GGG CGC ATA GAC GTG CTT GTA AAT AAT TTC GGC 

Glu Gly Arg lie Asp Val Leu Val Asn Asn Phe Gly 

TCA TCA AAT CCC AAG AM GAT CTT GGA ATT GCC AAT 

Ser Ser Asn Phe Lys Lys Asp Leu Gly lie Ala Asn 

550 

• 
ACA GAC CCG GAG GTA TTC ATC AAG ACG GTA AAT - ATC 

Thr Asp Phe Glu Val Phe lie Lys Thr Val Asn lie 

600 

• 
AAC CTA AAG AGC GTA TTT ATC GCA AGC CAG ACG GCT 

Asn Leu Lys Ser Val Phe lie Ala Ser GIn Thr Ala 

GTT AAG TAT ATG GCG GAA AAT GGA GGT GGA AGC ATC 

Val Lys Tyr Met Ala Glu Asn Gly Gly Gly Ser lie 

650 

• 
ATC AAT ATC TCA TCC GTA GGA GGC CTG ATA CCA GAT 

lie Asn lie Ser Ser Val Gly Gly Leu lie Pro Asp 
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700 

• 
ATC TCT CAG ATI GCC TAT GGA ACC AGC AAA GCG GCA 

lie Ser GIn lie Ala Tyr Gly Thr Ser Lys Ala Ala 

750 

• 
ATC AAC TAT CTG ACG AAA CTG ATA GCC GTA CAC GAG 

lie Asn Tyr Leu Thr Lys Leu lie Ala Val His Glu 

GCA AGG CAT AAC ATC AGA TGC AAT GCG GTA CTI CCA 

Ala Arg His Asn lie Arg Cys Asn Ala Val Leu Pro 

800 

• 
GGA ATG ACG GCA ACA GAT GCG GTG CAG GAT AAT CTG 

Gly Met Thr Ala Thr Asp Ala Val GIn Asp Asn Leu 

850 

• 
ACG GAT GAC TIC CGA AAC TIC TIC TIG AAG CAT ACG 

Thr Asp Asp Phe Arg Asn Phe Phe Leu Lys His Thr 

CCA ATI CAG CGT ATG GGG CTC CCG GAA GAG ATC GCG 

Pro lie GIn Arg Met Gly Leu Pro Glu Glu lie Ala ' 

900 

• 
GCA GCC GTA GTA TAC TIC GCA AGC GAT GAT GCC GCA 

Ala Ala Val Val Tyr Phe Ala Ser Asp Asp Ala Ala 

950 

• 
TAT ACC ACA GGA CAG ATI CTI ACC GTA TCT GGC GGT 

Tyr Thr Thr Gly GIn lie Leu Thr Val Ser Gly Gly 

1 000 

• 
TIC GGA CTG GCA ACG CCG ATA TTT GGA GAT CTG TCT 

Phe Gly Leu Ala Thr Pro lie Phe Gly Asp Leu Ser 
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GAA CGC TCA GAT GCC CGC GGG TAG AA T TTC ATG GGT 

Glu Arg Ser Asp Ala Arg Gly STP 

1 050 

• 
T AA CTT AA T CAA AAG CAG AA T CAG GAA AAG AGA CAG 

1 1 00 

• 
CC� GGA G�G GCT GTC TCT TTT ATC TAT AGT GCG C�T 

AGC �GC GCA CGT TTC .AA 

CTT TCG GAG AAC TTG GGG 

• � 
1 200 

• 
AM GCG GGC ATA GTG AAT 

� 

AGA TGT AM AGC CCT CTT 

1 1 50 

• 
CTT TAT AGA AM GTT CTC 

� 

ACT AM ATA GCC CGC TCA 
• 

CAG ACG GTT TGG ATT AM 

1 250 

• 
CAC CAA AAT CGT CAT CAT 

CAA GGT TAT CAA ATT CAT GTA AGA AAT AAT CCA TAT 

1 300 

• 
CCA GAA GTT C 
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FIG URE 2 1 :  Calculated Secondary Structure for the Putative Terminator Region. 
The secondary structure of the region 3' to the 7a-HSDH open reading frame was 
predicted using SQUIGGLES (UWGCG). The sequence from position 1068 to 1 197, 
inclusively, is i l lustrated. The hydrogen bonding for each base pair is shown as two 
or three l ines. The orientation relative to the 7a-HSDH gene is given at the 
respective termini. 
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Expression of the 7a-HSOH in Eubacterium sp. VPI 12708 and Escherichia coli: The 

expression of the 7a-HSOH in Eu. sp VPI 12708 and recombinant E. coli clones was 

examined at the level of transcription, translation, and enzymatic activity. The 

enzymatic activity appeared to be constitutively expressed i n  Eu. sp VPI 12708 since 

the specific activity was not affected by the addition of cholic acid to the growth 

medium (Table 6). Both Agt 1 1  1 + ,  containing the 6 kb EcoRi fragment, and pBH5 1 

transformants, containing the 3.8 kb KpnJ-PstJ fragment, over-expressed the NADP

dependent 7a-HSOH activity. The specific activities of these clones was 25- to 30-

fold higher than that of Eu. sp YPI 12708 cel l  free extracts. A small amount of 

NAD-dependent activity was also detected i n  the E. coli preparations and may 

indicate the presence of an NAD-dependent 7a-HSOH produced by this organism. 

The NADP-dependent 7a-HSOH produced by a pBH51 transformant was purified 

to homogeneity using the purification protocol described in the Methods section. 

Aliquots from each purification step were subjected to SOS-PAGE and are shown 

in Figure 22A. It was possible to purify as much as 2.5 mg of pure 7a-HSOH from 

a 1 l iter culture of E. coli. The specific activity of this purified preparation was 

comparable to that obtained from Eu. sp VPI 12708 (Table 6) .  Furthermore, the 

enzyme from the pBH5 1 transformant exhibited similar kinetics with the bile acid 

substrates; cholic acid, glycochenodeoxycholic acid, and 12-oxo-cholic acid (data not 

shown). Additional evidence for the identity between these 7a-HSOH preparations 

came from electrophoretic analysis of the purified prote ins from Eu. sp YPI 12708 

and a pBH5 1 transformant. SOS-PAGE analysis of both preparations revealed a 

prote in having a molecular mass of 3 1  kOa (Figure 22A). In the pBH5 1 trans-



TABLE 6: Activity of the 7o:-HSDH in Eu. sp. VPI 12708 and Recombinant 
Constructions in E. coli Strains. 

Material assayed3 Activity (units/mg protein)b 

88 

NADP+ NAD + 

Eu. sp. VPI 12708: 

Uninduced cells 0.30 NN 

Cholate-induced cells 0.30 NA 

Lambda gtl l  phage lysates: 

wild type NA 0.03 

recombinant ( 1  + ) 7.01 0.30 

E. coli transformants: 

pUC19 NA 0.32 

pBH5 1 8.93 0.70 

Purified 7o:-hydroxysteroid 

dehydrogenase from: 

Eu. sp VPI 12708 374.0 0. 16  

pBH5 1 transformant 332.0 0.24 

3 CFE of Eu. sp VPI 12708 and E. coli were made as described in the methods 
section. Phage lysates were obtained by centrifugation of 6 h cultures of E. coli 
Y1090r· infected with A gt l 1  phage. 

b All 7o:-HSDH reactions were performed as described in the Methods section. 

C No activity detected. 
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FIGURE 22: SDS- and Native-PAGE of 7a-HSDH Expressed in Eu. sp VPI 12708 
and E. coli. The purity of the 7a-HSDH from Eu. sp. VPI 12708 and E. coli was 
assessed on 12% SDS (A) and 7 to 30% exponential gradient native (B) gels. The 
lanes in panel A contained the following: M - molecular mass markers, 1 - pBH5 1 
transformant cell-free extract (25 J..I.g), 2- pooled DE-52 fractions (20 J..I.g), 3 - pooled 
Red A fractions (2.5 J..I.g), 4 - pooled DEAE-HPLC fractions (2.5 J..I.g), 5 - purified 7a
HSDH from Eu. sp. VPI 12708 ( 1 .8 J..I.g). The proteins were visualized using 
Coomassie bri l liant blue. The molecular mass of the marker protei ns is shown, in  
kDa, to  the  left of  the  gel. 

In panel B the lanes each contained 0.5 J..I.g of 7a-HSDH purified from 1 - a pBH5 1 
transformant, and 2 Eu. sp. VPI 12708. The proteins were visualized using the 
activity stain described in the Methods section. 
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formant, however, a second band of  approx 32 kDa was also observed. After 

subjecting the purified proteins to native gel electrophoresis, the 7a-HSDH band was 

visualized using an activity stain. The enzyme produced by both organisms appeared 

as a s ingle band of estimated to be 95 kDa by its relative migration (Figure 22B). 

When native gels were stained for protein, using Coomassie, the only band detected 

corresponded to 7a-HSDH activity (data not shown). 

Rabbit  polyclonal antiserum raised against the 31 kDa protein  purified from Eu. 

sp VPI 1 2708 was used to examine the expression of the 7a-HSDH. The specificity 

of this antiserum for the 7a-HSDH was shown by immunoinhibition (Figure 23). 

Approx. 50% inh ibition of enzymatic activity was observed after incubation of 

purified 7a-HSDH in  the presence of 10 J.d of i mmune serum, while less than 10% 

inhibition was detected with 150 p.1  of preimmune serum. Western analysis also 

confi rmed that the 7a-HSDH protein is constitutively expressed in Eu. sp VPI 12708, 

since bands of equal intensity were detected in iIninduced and cholate-induced CFE 

(Figure 24). A 3 1  kDa band was also detected i n  CFE from E. coli harboring 

pBH5 1 ,  but not pUC19. The purified prote ins from both E. coli and Eu. sp VPI 

12708 were recognized by the polyclonal antiserum. In addition, the 32 kDa band 

present in the purified 7a-HSDH preparation from E. coli was also immunoreactive. 

Northern blot analysis of the 7a-HSDH also demonstrated that the transcription 

of this gene was constitutive in Eu. sp VPI 12708 (Figure 25). The transcript 

detected from both Eu. sp VPI 12708 and E. coli was approx 1 kb, suggesting that the 

7a-HSDH is contained on a monocistronk message. The amount of 7a-HSDH 

message detected in a pBH5 1 transformant was about 30-fold greater than that of 
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FIGURE 23: Immunoinhibition of Purified 7a-HSDH Enzymatic Activity by Rabbit 
Polyclonal Antisera. Various volumes of rabbit serum were added to 50 ng of 7a
HSDH purified from Eu. sp. VPI 12708 and allowed to incubate for 15 min at 20°C. 
Enzymatic reactions were then in itiated by the addition of substrate, and were 
quantitated spectrophotometrically as described in the Methods section. 
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FIG URE 24: Western Analysis of 7a-HSDH Expression in Eu. sp VPI 12708 and E. 
coli. The protein samples were run on a 12% acrylamide gel and Western blotted 
on a nitrocellulose membrane as described in the Methods section. The lanes each 
contained the fol lowing: M - Prestained molecular mass markers, 1 - Cholic acid
Induced Eu. sp. VPI 12708 CFE ( I S  J.Lg), 2 - Uninduced Eu. sp. VPI 12708 CFE 
( ISJ.Lg) 3 - Purified 7a-HSDH from Eu. sp. VPI 1 2708 (0.3 J.Lg), 4 - E. coli strain 
DHSa pUC19 transformant CFE (0.2 J.Lg), S - E. coli strain DHSa pBHS 1 
transformant CFE (0.2 J.Lg), 6 - Purified 7a-HSDH from E. coli strain DHSa pBHS 1 
transformant. The size of the prestained molecular mass markers is given, in  kDa, 
to the left of the blot. 
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FIGURE 25: Northern Analysis of 7a-HSDH Transcription in  Eu. sp VPI 12708 and 
E. coli. Samples of total RNA from either urunduced (A) or cholic acid-induced (B) 
cultures of Eu. sp.  VPI 12708 and an E. coli pBH51 transformant were run on a 1 % 
agarose gel i n  the presence of formaldehyde as described in  the Methods section. 
Lanes 1, 2, and 3 in both sections A and B contained 2.5, 5.0, and 10.0 J.1.g of RNA, 
respectively. Lanes 1,  2, and 3 in section C contained 0. 1 ,  0.25, and 0.5 J.1.g of RNA. 
The migration distances for the 16S and 23S ribosomal RNA's are shown to the left 
of the autoradiogram, while the positions of the 1 Kb ladder markers are given on 
the right. 
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Eu. sp. VPI 12708 RNA preparations. These results are in agreement with the 

relative levels of enzymatic activity detected i n  CFE from these organisms. 

The transcriptional start site for the 7a-HSDH message generated in both E. 

coli and Eu. sp. VPI 1 2708 was determined by primer extension analysis (Figure 26). 

A major band, corresponding to A- 153, was found using 7a-HSDH mRNA isolated 

from Eu. sp. VPI 12708. A similar start site was found using mRNA from a pBH51 

transformant, however, two additional bands (A-150 and C- 147) were also detected. 

£. coli harboring only pUC19 did not produce any signal, demonstrating that these 

represent 7a-HSDH related transcripts. 

Sequence Homology Between the 7a-HSDH and Several Other Alcohol/Polyol 

Dehydrogenases: The entire 7a-HSDH amino acid sequence, as deduced from the 

nucleotide sequence, was compared against proteins in the NBRF and Swiss protein 

data bases using FASTA (UWGCG). Several members of the short-chain, non-zinc 

alcoholjpolyol dehydrogenase superfamily exhibited significant homology to this 

protein. Nine proteins, i ncluding two 27 kDa cholate-inducible polypeptides from Eu. 

sp VPI 12708, were selected to be compared to the 7a-HSDH and a consensus 

sequence was created using GAPS (UWGCG) (Figure 27). Extensive homology was 

detected in the amino terminal half of the proteins. This region has previously been 

demonstrated to contain the pyridine nucleotide binding domain [90-92]. However, 

substantial homology was also noted in the carboxy terminal region as well .  The 

relative identity between these 10 proteins is i l lustrated as a histogram in Figure 28. 

When displayed in this manner, five regions of strong identity between these proteins 

was noted (centered at positions 1 7, 92, 125, 1 35, and 1 73. The GAPS program 
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FIG URE 26: Primer Extension Analysis of the 7a-HSDH Start of Transcription. 
The primer extension and dideoxy reactions were performed as described in the 
Methods section, and run on a 8% acrylamide sequencing gel. Lanes A, G, C, and 
T contained the corresponding sequencing reactions. The nucleotide sequence from 
positions 138 to 1 68 is shown to the right of the autoradiogram. Lanes 1, 2, and 3 
are the primer extension reactions performed with RNA from E. coli DH5a pUC1 9  
transformant, E. coli DH5a pBH5 1 transformant, and Eu. sp. VPI 12708, respectively. 
The start site for transcription A- 153 is deno�ed by an arrow and is i l lustrated i n  
bold-faced type. A possible - 1 0  region for the 7a-HSDH promotor i s  labelled P (- 10). 
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FIGURE 27: Alignment of the Derived Amino Acid Sequence for the 7a-HSDH 
With Nine Other Alcohol /Polyol Dehydrogenases Using GAPS/LINEUP /PRETIY 
(UWGCG): The entire derived amino acid sequence for the 7a-HSDH was 
compared against the sequences of several alcoholjpolyol dehydrogenases using the 
UWGCG programs as described in the Methods section. A consensus for al l  1 0  
sequences compare was obtained and i s  displayed on the top l ine o f  each grouping. 
Posit ions i n  each of the sequences which match the consensus sequence are shown 
in bold type. Positions which are conserved among all of the sequences are shown 
as in capi tal letters in the consensus sequence and have an asterisk above them. The 
names, and origins of all of the sequences are given in the Table of Abbreviation�. 
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FIGURE 28: Relative Identity Between Several A1cohol/Polyol Dehydrogenases. 
The percentage of the protein sequences from Figure 21 which agreed with the 
consensus sequence, as generated by PRETTY, is il lustrated for every position of the 
consensus as a h istogram. The six perfectly conserved residues are labelled with 
single letter abbreviations. 
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identified six residues which were absolutely conserved in al l  of the dehydrogenases 

examined; these amino acids are labelled in Figure 28. Moreover, eight additional 

amino acids positions were identical in 90% of the sequences, with another eleven 

residues showing 80% conservation. Since these dehydrogenases are comprised of, 

on the average, approx 260 amino acids, it appears that about 10% of the amino acid 

residues are conserved greater than 80% within this superfamily. 

During alignment of the different sequences to the 7o:-HSDH, the GAPS 

program calculated several parameters which are useful measures of the relative 

relatedness of these proteins. These al ignment metrics are shown in Table 7. The 

sequence with the best overal l  match to the 7Q:-HSDH sequence was BmGDH-A. 

The sequences for Eu27K-2 and Hs1 7,B-HSDH also received high quality scores. The 

Sh20,B-HSDH and Eu27K-2 exhibited the most identity and similarity to the 7o:-HSDH 

sequence, respectively. The poorest matches were generated from the KaRDH and 

DmADH sequences. The GAPS algorithm was not designed for multiple sequence 

al ignments. In addition, the program is capable of ignoring areas of good homology 

in order to optimize the alignment elsewhere in the sequence. This problem is only 

compounded by the multiple alignments necessary to achieve an overal l consensus 

sequence. Therefore, all nine secondary alcohol dehydrogenases were compared to 

the 7o:-HSDH using ALIGN and DOTPLOT (Figure 29). AJthough no consensus 

sequence or numerical quality scores are generated, this format allows one to visually 

obtain a qualitative assessment of the alignment for each of the alcoholjpolyol 

dehydrogenase sequences. With these programs, stretches of conserved sequence are 

i l lustrated as diagonal l ines. These data confirm that BmGDH-A and Eu27K-2 give 
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TABLE 7: Alignment Metrics for the Alcohol/Polyol Dehydrogenases as Compared 

to the Derived 7Q-HSDH Sequence Using GAPS (UWGCG)' 

SequenceA QualityB RatioC IdentityD SimilarityE 

Eu27K- 1 126.7 0.509 30.222 53.778 

Eu27K-2 132.6 0.533 33.628 57.522 

Hs1 7,B-HSDH 140.2 0.527 26.693 5 1 .793 

Hs 15-HPGDH 126.6 0.476 32. 1 98 55 .365 

Sh20,B-HSDH 132.3 0.52 1 36.555 56.723 

DmADH 105.3 0.4 1 1  23.786 45.63 1 

KaRDH 107.5 0.432 27.700 53.99 1 

BmGDH-A 140.5 0.538 32.922 55.967 

BmGDH-B 129.6 0.493 28.689 54.9 18  

A Full sequence names and origins are given in the Table of Abbreviations. 

B 

c 

D 

E 

Quality is the value optimjzed by GAPS. The magnitude of the score reflects 
the number of positions having identity or sirrularity rrunus the number of gaps 
inserted to achieve the match. 

Ratio is the Quality normalized for the length of the sequence. 

Identity is the percentage of exact matches between the two sequences. 

Similarity is the percentage of residues representing conservative replacement 
between the two sequences. 
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FIGURE 29: Alignment of the Deduced Amino Acid Sequence for the 7a-HSDH 
With Several Other Alcohol/Polyol Dehydrogenases Using COMPARE/DOTPLOT 
(UWGCG). Each of the njne other alcoholjpolyol dehydrogenases were aligned with 
the 7a-HSDH sequence using the COMPARE program as described in the Methods 
section. The results as plotted by DOTPLOT are shown in panels A-I. In all panels, 
the 7a-HSDH sequence is plotted on the y-axis. The sequences plotted on the x-axis 
for each panel were the fol lowing: 

A: Eu27K-l, B: Eu27K-2, C: BmGDH-A, D: BmGDH-B, E: KaRDH, 
F: DmADH, G: Sh20.B-HSDH, H:  Hs 15-HPGDH, I: Hs 17.B-HSDH· 

The fu l l  names, and origins are given in the Table of Abbreviations. 
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the best al ignments while DmADH gives a poor alignment with the 7a-HSDH 

sequence . The homology to the glucose dehydrogenases and 27 kDa proteins can be 

seen to extend throughout the entire length of the proteins. The KaRDH exhibited 

a better and Hs17.t3-HSDH showed a poorer alignment than would have been 

predicted from the GAPS alignment metrics table.  All rune sequences appear to be 

homologous to the 7a-HSDH between positions 0 to 50 and 1 00 to 150. These 

regions are probably part of the pyridine nucleotide b inding domain. The region(s) 

involved in bi le acid binding, however, could not be deduced from these data. 

Purificat ion of the NADH:FOR: The cholate-inducible NADH:FOR was also 

purified from Eubacterium sp. VPI 12708. Cell free extracts from 16 l iters of cel ls 

exposed to cholic acid contained over 300 units of NADH:FOR activity, with a 

specific activity of 0 .13 .  This enzyme was purified to apparent electrophoretic 

homogeneity using a five step protocol as outlined in Table 8. The most effective 

steps were Cibacron Blue A and phenyl-HPLC chromatography which gave 6- and 

7.6-fold purifications and 4 1  % and 34% recoveries, respectively. A final purification 

of 372-fold with a 10% overal l  recovery was ult imately achieved. The enzyme eluted 

as a single symmetrical peak from DE-52 (Figure 30). Two peaks of activity could 

be detected using this resin if the pH of the column was above 7.0. Although Red 

A chromatography did not result in significant purification of the NADH:FOR, i t  was 

a necessary step to el iminate 7a-HSDH activi ty, which otherwise contaminated the 

NADH:FOR preparations. Since Cibacron blue A bound the NADH:FOR 

inefficiently, multiple load ings were necessary to achieve acceptable recoveries. 

Approximately 20 to 25% of the detectable activity remained unbound even after 10  



TABLE 8: Pur ification of the NADH:FOR. 

The purification was performed using 55 g of cells (wet pellet weight), from 16 I of tryptic soy broth. Details of the purification 
procedure are given in the Methods section. 

Purification Step Volume Protein Activity Sp. Act. Purification Yield 

(ml) (mg) (Units) I (Ujmg) (Fold) (%) 

Cell Free Extract 62.0 2580 329.2 0. 13  1 .0 100 

DE-52 35.0 1190 308.9 0.26 2.0 94 

Reactive Red 120 37.0 1060 307.5 0.29 2.2 93 

Cibacron Blue A 30.0 72.8 126.0 1 .73 13.3 38 

DEAE-HPLC (pH 7.0) 1 9.0 15 .2 96.9 6.38 49. 1 29 

Phenyl-HPLC (pH 7.0) 4.0 0.67 32.4 48.36 372.0 10 

lOne unit of activity is defined as the flavin-dependent oxidation of l/-.Lmol NADHjmin. 
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FIGURE 30: DEAE-Cellulose Elution Profi le for the NADH:FOR. Cel l  free extract 
(2.6 g) was loaded onto a pre-equ i l ibrated DE-52 column. Bound prote ins were 
eluted with an increasing NaCI gradient at a flow rate of 1 .0 mljmin. 
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passages over the column. The bound NADH:FOR could only be eluted using 1 M 

KCI (Figure 3 1 ). Solutions containing up to 2 M NaCI and 20 mM NAD(H) resulted 

i n  enzyme recoveries of less than 5%. A variety of other affinity matrices ( including 

NAD-agarose, acriflavine agarose, and reactive blue 4, blue 72, brown 10, green 5, 

green 19, yellow 3, and yellow 86 agarose) were found not to bind the NADH:FOR 

activity. The e lution profile of the NADH:FOR from OEAE-HPLC was complex, 

as three peaks of activity were detected (Figure 32). The predominant form eluted 

at 35 rnl, while smaller peaks of activity were detected at 50 and 65 ml (for the sake 

of discussion these peaks shall be referred to as forms I, II and I I I, respectively). For 

the protocol shown in Table 8, the form I fractions were pooled and used for further 

purification. The flavin oxidoreductase exhibited substantial hydrophobic character 

on phenyl-HPLC. The bound protein was only partially eluted from this hydrophobic 

i nteraction column by a decreasing ammonium sulfate gradient (Figure 33). The 

specific e lution of most of the loaded NADH:FOR activity was achieved biinjecting 

10% ethanol over the column. The enzyme preparation after phenyl-HPLC was 

judged to be >95% homogeneous by SOS-PAGE (Figure 34). The purified enzyme 

contained a single protein  subunit of 72 kDa. Gel fi ltration chromatography, using 

Sepharose CL-6B, gave a native molecular mass of 2 1 0  kOa (Figure 35) .  These data 

suggest that the NADH:FOR exists e ither as a dimer or trimer of identical subunits. 

The purified enzyme was somewhat stable to storage at either 4°C or -20°C in the 

presence of 1 0% glycerol and 1 mM OTT (50% loss of activity in 2 to 3 weeks). 

Since the presence of multiple peaks of NADH:FOR activity during elution from 

DEAE-HPLC was unexpected, further experiments were performed to discern the 
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FIGURE 31: Cibacron Blue A Elution Profi le for the NADH:FOR. The column 
eluate from Reactive Red chromatography was adjusted to pH 7.0 and passed over 
a pre-equil ibrated Cibacron Blue A column six t imes. Unbound proteins were 
washed off with 15 column volumes of buffer. The bound proteins were then eluted 
with 1 M KCI. 
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FIGURE 32: DEAE-HPLC Elution Profi le for the NADH:FOR. Pooled and 
desalted fractions from Cibacron Blue A were loaded onto a DEAE-3SW HPLC 
column at a flow rate of 0.4 ml/min. Bound proteins were eluted with an increasing 
NaCl gradient at a flow rate of 0.85 mJ/min. The prote in elution profile was 
monitored at 280 nm using an online variable wavelength detector. 
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FIGURE 33: Phenyl-HPLC Elution Profi le for the NADH:FOR (Form f). Pooled 
DEAE-HPLC fractions from peak f were brought to 20% (w/v) ammonium sulfate 
by the addition of the solid salt. The proteins were then loaded onto a phenyl-5PW 
HPLC column which had been equi l ibrated with buffer containing 20% ammonium 
sulfate. Loosely bound proteins were eluted with a decreasing ammonium sulfate 
gradient. The NADH:FOR was specifically released by injecting 20% ethanol onto 
the column. The protein elution profi le was followed at 280 nm, using a variable 
wavelength detector. 
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FIGURE 34: SDS-PAGE of the NADH:FOR. AJiquots from each step of the 
purification were subjected to electrophoresis using a 12% acrylamide slab gel. The 
lanes contained the following: M - Low molecular weight mass markers, 1 - CFE 
(50/-Lg), 2 - Pooled DE-52 fractions (40 /-Lg), 3 - Pooled Red A flow through (40 /-Lg), 
4 - Pooled Cibacron Blue A fractions (35 /-Lg), 5 - Pooled DEAE-HPLC (Peak I )  
fractions ( 15 /-Lg), 6 - Pooled Phenyl-HPLC fractions ( 1 0  /-Lg). The molecular mass 
of the marker proteins is shown, in kDa, to the left of the gel . 
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FIGURE 35: Gel Filtration Elution Profi le and Native Molecular Mass 
Determination for the Purified NADH:FOR. Purified NADH:FOR (40 J.1.g) was 
chromatographed on a sepharose CL-6B column equil ibrated with solution A 
containing 1 00 mM NaCI, and i ts relative elution volume was calculated. 

Inset: A molecular mass standard curve was generated from the LoglO 
molecular mass vs. the relative elution volumes (Ve/Vo) of several standards. 
The proteins used were as follows - A: apoferritin, B: f3 amylase, C: alcohol 
dehydrogenase, D: albumin, E: carbonic anhydrase, F: cytochrome C. The 
fi l led triangle represents the NADH:FOR. 
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reason for thjs behavior. Aliquots of the NADH:FOR preparation from various 

points in the purification protocol were found to give remarkably different elution 

profiles on DEAE-HPLC (Figure 36). In the least purified enzyme preparations, the 

predominant form ( >  80%) was form II I .  The relative proportion of form II I  

detected was found to decrease, with the concomitant increase of form I, as the 

enzyme was subjected to further purification. After performing both red A and 

cibacron blue A chromatography, form I represented approx 75 to 80% of the 

NADH:FOR activity. Form I I, although detected, was only present as a minor peak 

under the conditions examined. The material from the form I I I  peak shown in 

Figure 32, was pooled and subjected to phenyl-HPLC (Figure 37).  Although some 

of the NAD H:FOR activity exhibited an e lution profile similar to form I, a new, less 

hydrophobic peak was also detected. The fractions of this new peak also contained 

a 72 kDa protein (data not shown), but were noticeably yel low-brown as compared 

to the colorless fractions obtained from form I. The absorbance spectra of the 

purified proteins from both form I and form I I I  were compared between 300 and 500 

nm (Figure 38). Form III ,  but not form I, was found to have two absorbance peaks 

at 340 and 475 nm, indicative a bound flavin. Due to the lack of material, the 

identity of the flavin was not determined. Attempts to add FAD to form I, 

aerobically, did not alter the activity elution profile to that of form II I .  Furthermore, 

alteration of the buffer pH alone was not sufficient to change the elution profile of 

form I I I  from the pooled DE-52 fractions. Thus, the interaction of the NADH:FOR 

with these column resins is requ ired for this effect. 

Expression of the NADH:FOR in Eu. sp. VPI 12708: The expression of the NADH: 
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FIGURE 36: Effect of the Purification Protocol Upon the DEAE-HPLC Elution 
Profi le of the NADH:FOR. Protein samples were chromatographed, using DEAE
HPLC, at several points in the NADH:FOR purification protocol. Approximately 
the same amount of NADH:FOR activity was loaded in each panel. After 
separation, the fractions were assayed for NADH:FOR activity. The proteins 
analyzed were obtained at the following points: 

A: Proteins from pooled DE-52 fractions. 

B: Proteins after DE-52 and Cibacron Blue A chromatography. 

C: Proteins after DE-52, Reactive Red A, and Cibacron Blue A chromatography. 
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FIGURE 37: Phenyl-HPLC Elution Profi le of the NADH:FOR (Form I I I). Pooled 
DEAE-HPLC fractions from peak I I I  were brought to 20% (w/v) ammonium sulfate 
by the addition of the solid salt The proteins were then loaded onto a phenyl-5PW 
HPLC column which had been equil ibrated with buffer containing 20% ammonium 
sulfate. Loosely bound prote ins were eluted with a decreasing ammonium sulfate 
gradient Some NADH:FOR was released by injecting 20% ethanol onto the 
column. The protein elution profi le was followed at 280 nm, using a variable 
wavelength detector. 
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FIGURE 38: Absorbance Spectra of Purified NADH:FOR Forms I and I I I .  The 
absorbance spectra of purified NADH :FOR forms I and I I I  (400 J1.g each) were 
determined on a Shimadzu UV160U recording spectrophotometer, using a quartz cell 
with a 1 cm path length at 20°C. 



128 

0.05 

A 
0.04 

v <J 0.03 c 
0 .0 
I..... 
0 (f) 0.02 .0 

« 

0.01 

0.00 
300 350 400 450 500 550 

Wavelength (nm) 

0.05 

B 
0.04 

v <J 0.03 c 
0 .0 
I..... 
0 (f) 0.02 .0 
« 

0.01 

0.00 
300 350 400 450 500 550 

Wavelength (nm) 



129 

FOR in Eu. sp. VPI 12708 was confi rmed to be cholate-inducible by native gel 

electrophoresis, Ochterlony plates, and Western analysis. Activity stains of native 

gels showed the presence of a cholic acid-inducible NADH:oxidoreductase band with 

a calculated molecular mass of 120 kDa (Figure 39). The migration of this band 

corresponded to the purified enzyme. A constitutively expressed band of lower 

molecular mass was also detected in uninduced cell-free extracts. Analysis of cel l 

free extract and purified NADH:FOR using Ochterlony plates showed that the rabbit 

polyclonal antiserum raised against the NADH:FOR reacted with a cholic acid

inducible protein (Figure 40A). Furthermore, Western analysis revealed that a 72 

kDa protein was specifically recognized by these antibodies (Figure 40B). Both form 

I and form I I I  were observed to react with the immune serum. The specificity of the 

rabbit antiserum for the NADH:FOR was confirmed by immunoinhibition (Figure 

4 1 ). About 50% inh ibition of the catalytic activity of the purified NADH:FOR was 

achieved after incubating the enzyme with 150 I.Ll of immune serum. No Inhibition 

was detected using preimmune serum. 

Effect of Various Compounds Upon NADH:FOR Activity: The purified enzyme was 

found to be very sensi tive to the presence of several sulfhydryl inhibitors. Near 

complete inhibition of catalytic activity was achieved after incubating the 

NADH:FOR with either CuCI2, HgCI2, NEM, or pCMS at 1 mM final concentrations 

(Table 9). The enzyme was also inhibited by 1 mM ZnCl2 (approx 73%). Similar 

concentrations of iodoacetate and iodoacetamide, however, failed to substantially 

inhibit catalytic activity. The metal ion chelators EDTA and o-phenanthroline, but 

not EGTA and NaN3, were also found to reduce NADH:FOR activity. In addition, 
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FIGURE 39: Native Gel Electrophoresis of the NADH:FOR. Protein al iquots were 
run on an 8% acrylamide slab gel using the buffer system of Laemmli, except that 
SDS was excluded. The NADH:FOR was visualized with the activity stain described 
in the Methods section. The arrows denote the location of the cholic acid-inducible 
NADH:FOR (FOR) and a constitutive activity (CON). The lanes contained the 
fol lowing: 1 - Cholic Acid-Induced CFE (50 J.Lg), 2 - Uninduced CFE (50 J.Lg), 
3 - Purified Form I ( 1 0  J.Lg), 4 - Purified Form ill ( 1 0  J.Lg). 
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FIGURE 40: Western Analysis of NADH:FOR Expression in  Eu. sp. VPI 12708. 
The expression of the NADH:FOR protein was analyzed using both Ochterlony 
plates (A) and Western blots (B). In Panel A, the center wells contained 1 00, .. d of 
e i ther preimmune ( 1 )  or immune (2) serum. The other wells contained the 
following: I - Cholic Acid-Induced CFE (2 mg), VI  - Vninduced CFE (2mg), P 
Purified FOR (Form I )  (50 J..Lg). The plate were allowed to i ncubate at 37°C for 48 
hours. 

Western blot analysis was performed from samples run on a 12% acrylamide SDS
slab gel and electrophoretically transferred to a nylon membrane. rhe lanes 
contained the following: M - Prestained Molecular Mass Markers, 1 - Cholic Acid
Induced CFE ( 10 J..Lg), 2 - Vninduced CFE ( 1 0  J..Lg), 3 - Purified NADH:FOR Form 
I (1 J..Lg), 4 - Purified NADH :FOR Form I I I  (1 J..Lg). The molecular mass of the 
marker prote ins i s  given, in kDa, to the left of the blot. 
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FIGURE 41: Immunoinhibition of NADH:FOR Catalytic Activity by Rabbit 
Polyclonal Antisera. Various volumes of rabbit  serum were added to 50 ng of 
NADH:FOR purified from Eu. sp. VPI 12708 and allowed to incubate for 15 min at 
20°e. Enzymatic reactions were then initiated by the addition of substrate, and were 
quantitated spectrophotometrical ly as described in the Methods section. 



135 

TABLE 9: The Effect of Several Different Compounds Upon NADH:FOR Activity. 

Purified protein ( 1 0  ng) was pre-incubated with the indicated amount of a putative 
inhibitor for 1 0  min at 20°C in 1 00 mM sodium phosphate (pH 6.8). Al l reactions 
were initiated by the addition of substrate and were performed as described in the 
Methods section. 

Concentration Percent 

Compound A (mM) B Control C 

EDTA 5.0 52 

EGTA 5.0 1 0 1  

o-Phenanthroline 2.0 58 

NaN3 1 0.0 99 

ZnCl2 1 .0  27 

CuCl2 1 .0 1 

HgCl2 1 .0 3 

NEM 1 .0 4 
Iodoacetate 1 .0 9 1  

Iodoacetamide 1 .0 1 12 

PCMS 0.2 5 

Acriflavine 0.2 mglml 1 3  

N-Bromosuccinamide 0.2 8 

A Ful l  names for abbreviated compounds are given in the List of Abbreviations. 

Acriflavine is a mixture of 3,6-diamino-l0-methylacridinium chloride and 3,6-di

aminoacridine. 

B All concentrations except that for acriflavine (mglml) are l isted in mil l imols/l iter. 

C The act ivities are expressed as percent of dH20 control reactions (2 U Iml). The 
reactions were performed as described in the Methods section. All compound were 

tested in triplicate and the mean values used. 
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acriflavine (a flavin analog) and N-bromosuccinamide were both strongly inhibitory 

at the concentrations tested. 

N-Terminal Amino Acid Sequence Analysis of the NADH:FOR: The N-terminal 

amino acid sequence for the purified NADH:FOR was determined and is shown in 

Figure 42A. The f irst 25 residues of this protein were found to exhibit significant 

homology to an enoate reductase from Clostridium kluyveri [ 1 04] (36% identity and 

44% similarity) when compared using FASTA. H owever not al l  aligned residues 

represent conservative replacements, due to the nature of the algorithm employed 

by this program. The al ignment of the unknown resides (Xxx) in both sequences is 

i l lustrated to indicate the possibil i ty that these proteins may both possess similar 

residues at these posit ions which are difficult to sequence by Edman degradation. 

The homology exhibited between these proteins may be indicative of a simi larity in 

reactions performed. The general reaction mechanism for enoate reductase is 

i l lustrated in Figure 42B, along with a possible function for the NADH:FOR in 7a.

dehydroxylation. 

Two anti-sense oligonucleotide probes were created to probe for the 

NADH:FOR gene (Figure 43A) .  A restriction map for the NADH:FOR gene was 

deduced by in situ hybridization of an end-labelled probe (FOR-2) to Eu. sp. VPI 

12708 chromosomal DNA after digesting with several restriction endonucleases and 

is i l lustrated in Figure 43B. The entire NADH:FOR coding region should be 

contained both upon the 8.9 kb Pst! and the 5.9 Kb Kpn! fragments. Due to the 

ambigui ties inherent to chromosomal restriction mapping, i t  is not yet clear if the 

NADH:FOR gene is part of the polycistronic message previously described [ 1 78]. 
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F IGURE 42: Similarities Between the N-Terminal Amino Acid Sequences and 
Proposed Reaction Mechanisms for the NADH:FOR and Enoate Reductase. The 
f irst 25 N-terminal amino acid residues for the NADH:FOR are shown in panel A. 
Of these, the identity of two could not be determined and are denoted by Xxx. Also, 
the identity of residue 8 was ambiguous, being e ither leucine or alanine. The 
sequence is al igned with that of enoate reductase. 
The reaction mechanism for enoate reductase, and a possible functiOJ) for the 
NADH:FOR in  7o:-dehydroxylation of bi le aCids is i l lustrated in panel B. 
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FIGURE 43: Synthetic Ol igonucleotide Probes and Chromosomal Restriction Map 
for the NADH:FOR. The two oligonucleotide probes (FOR-I, and FOR-2) 
synthesized for the NADH:FOR are shown in panel A. The amino acid sequence 
to which these probes correspond is shown above them. Note that these probes are 
for the reverse complement strand (negative strand). 
The chromosomal restriction map generated by in situ hybridization is i l lustrated in 
panel B. The restriction enzymes used are abbreviated as follows: E - EcoRf, 
B - BamH/,  K - Kpn/, and P - Pst/. The area where the probe is thought-to anneal 
is i l lustrated as a th icker bar. 
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DISCUSSION 

Purification and Characterization of the 7a-HSDH: The 7a-HSDH from Eubacterium 

sp. VPI 127908 has been purified to e lectrophoretic homogeneity. Although bile acid 

HSDH's with d ifferent regio- and stereo-specificities have been purified, this was the 

first report of the successful purification of a 7a-HSDH. Recently, however, two 

additional 7a-HSDH's have been purified from Escherichia coli [143] and Clostridium 

absonum (Dr. James Coleman, personal communication). The purification scheme 

adopted yielded 450 J.1.g of pure protein with a final specific activity of over 390 

J.1.moljmin/mg. Affinity chromatography using reactive red 120-agarose was the most 

effective fractionation technique employed. Immobil ized triazine Dye-ligand 

chromatography has been a valuable step in the purification of a variety of pyridine 

nucleotide-l inked enzymes [31] and has been successfully used in the purification of 

several NADP-dependent hydroxysteroid dehydrogenases (for examples see [3,4,6, 

67, 1 10]). However, bound hydroxysteroid dehydrogenases have previously been 

eluted from affinity columns using either l inear or step gradients of NaCI at high 

concentrations (up to 3 M). In contrast, we were only able to effect the specific 

release of 7a-HSDH in the presence of both NaCI (250 mM) and cofactor (NADP+, 

1 0  mM). Attempts to elute the activity with either NaCI or cofactor alone were 

141 
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unsuccessful, suggesting that both specific (cofactor-dependent) and non-specific 

(hydrophobic and/or electrostatic) interactions may play a role in the binding of 7Ct

HSDH to this resin. 

Bi le acid hydroxysteroid dehydrogenases constitute a heterogeneous class of 

oxidoreductases. The various enzymes which have been examined, e ither as purified 

proteins or in partially purified preparations, vary widely with respect to molecular 

mass, substrate and cofactor specificity, and affinity for substrates as judged by 

apparent Km. The 7Ct-HSDH purified in this study was similar, in certain respects, 

to several previously characterized enzymes. The reported molecular mass of bile 

acid hydroxysteroid dehydrogenases ranges from 45 to 320 kDa, but the majority fal l  

between 60 and 130 kDa. The native molecular mass, as  deterrruned by both gel 

filtration and native gel electrophoresis, is comparable to values reported for NADP

dependent 7Ct-HSDH from rat l iver rrucrosomes [6], and Bacteroides tragilis [86], as 

well as several other NADP(H)- [44,46,67], and NAD(H)-depenaent [47] 

hydroxysteroid dehydrogenases. The subunit mass of the 7Ct-HSDH was estimated 

by SDS-PAGE to be 31 kDa, suggesting that this enzyme may exist as a tetramer of 

identical, catalytic subunits. Subunit identity is further supported by the N-terminal 

arruno acid sequence data (Figure 13) .  The existence of the 7Ct-HSDH as a tetramer 

is somewhat unique, in that most hydroxysteroid dehydrogenases reported to date are 

present as dimers, although tetrameric [ 156] and monomeric [67, 123] hydroxysteroid 

dehydrogenases have also been described. The pH optima for bile acid 

hydroxysteroid dehydrogenases is uniformly alkaline in the d irection of bile acid 

oxidation, with values ranging from 8.5 to 1 1 .0 [85] .  The purified 7Ct-HSDH agrees 
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well with this pattern, in that a sharp pH optimum for bile acid oxidation was 

observed between pH 9.5 and 1 0.5. A second, less alkaline, pH optimum was 

observed between pH 7.5 and 8.5 (Figure 1 6) .  Similar patterns are apparent in 

previously published pH optima profiles [44,45,78, 123], but their possible significance 

was not d iscussed. The physiological significance of extremely alkaline conditions ( >  

p H  9) for most organisms is questionable. It was found that although the apparent 

V max was 2- to 3-fold greater at pH 1 0.5 than at pH 8.5, the apparent � increased 

correspondingly ( ie.  substrate affinity decreased). Thus V max/�' a measure of 

enzyme specificity, remained relatively constant between the pH conditions examined. 

Because pH 8.5 is a more physiological pH, and enzyme function was not discernibly 

impaired, all characterization of the enzyme in the oxidative direction was performed 

at this pH. The pH optimum for bi le acid reduction was between pH 5.5 and 6.5, 

in agreement with values obtained for other hydroxysteroid dehydrogenases [85] .  The 

substrate range exhibited by the purified enZyme was similar to that des-cribed for 

other, partially purified 7a-HSDH's [86, 1 13, 1 1 6, 154] in that both free and conjugated 

bi le acids are uti l ized, albeit to varying degrees. The lack of activity with 7-

dehydroxy, 7,B-hydroxy, and 7a-hydroxy 7,B-methyl bile acids underscores the 

stereospecificity of this enzyme for an unhindered 7a-hydroxy moiety. The markedly 

decreased activity observed with hyocholate as well as 3-oxo and 12-oxo

chenodeoxycholate was surprising. The presence of the 6a-hydroxy group might 

interfere with proper orientation in the substrate binding pocket, due either to stearic 

h inderance or an alteration in bile acid hydrophobicity. It would be of interest to 

examine the effect of a 6,B-hydroxy group as wel l (a-muricholate and ,B-muricholate) .  



144 

This adduct would be in  an axial position, projecting into the predominantly 

hydrophobic domain of the bile acid. Unfortunately, these bile acids were not 

commercial ly available at the t ime of this investigation. The effect of the oxo group 

on activity was observed in both the direction of bile acid oxidation and reduction. 

However, this was primarily upon the apparent � in the former case, and the V max 

i n  the latter (Table 3). These results suggest a possible mecharusm for the 

i nteraction of the 7a-HSDH with the cholate-inducible 7-dehydroxylation pathway, 

as i l lustrated in Figure 44. Since both compete for the same bile acid substrates, the 

� for the irutial step in de hydroxylation (3a-HSDH) will most l ikely be very low ( < 

1 0  J.LM) so as to compete with the 7a-HSDH for substrate. The presence of three 

copies of the 27 kDa cholic acid-inducible protein gene could also be important in 

this interaction, i f  the 27K proteins are indeed the 3a-HSDH. As judged from 

activity levels and Western analysis, the 7a-HSDH accounts for less than 0.05% of the 

total cell protein. The expression of the 3a-HSDH from three genetic loci could 

allow the production of a large amount of this enzyme by the bacterial cell . The 3a

HSDH, then, could compete for the bile acid substrate by sheer bulk of protein 

present. As shown in Figure 44, after bile acids are oxidized by the 3a-HSDH, they 

are no longer efficiently used as substrates by the 7a-HSDH (70-fold increase in �). 

Therefore, the action of the 3a-HSDH effectively commits the bile acids to the 7a

dehydroxylation pathway. It should be noted that the reduction of 3,7-dioxo-cholic 

acid to 3-oxo-cholic acid by the 7a-HSDH is not impaired. This permits the 

uti l ization of the 3,7-dioxo bile acid pool for 7a-dehydroxylation as well. So, although 

the 7a-HSDH competes with 7a-dehydroxylation for bile acid substrates, this reaction 
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FIGURE 44: A Model for the Interaction Between the 7Q-HSDH and 7Q
Dehydroxylation in  Eubacterium sp. VPI 12708. 
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does not appear to represent a dead-end for bile acid biotransformation in this 

organism. 

The purified 7a-HSDH absolutely required NADP(H) as the cofactor for this 

reaction. Although the stereospecificity of this enzyme for the cofactor (ie. 4R-H

NADPH or 4S-H-NADPH) was not determined, other related enzymes have been 

previously examined. Three other bile acid HSDH's, specific for 3a, 7a, and 12a 

hydroxy groups, have been shown to utilize the 4S-hydrogen of their respective 

coenzymes [62,135]. Therefore, the HSDH's appear to all be B-stereospecific 

dehydrogenases. This finding is not unexpected, since enzymes which catalyze simi lar 

reactions usually have the same stereospecificity (Bently's First Rule [ 15]). It has 

been argued by some [ 14, 131] that cofactor stereospecificity was a strongly conserved 

trait during evolution and may related to the functional property of the proteins. 

This  reasoning would lead to the hypothesis that the 7a-HSDH from Eu. sp. VPI 

12708 is also a B-stereospecific enzyme. Future experiments, using specifically 

tritiated or deuterated 4-H-NADPH, would allow the direct determination of the 7a

HSDH's stereospecificity. 

The kinetic values derived for the 7a-HSDH are lower than reported for other, 

partially purified, 7a-HSDH's [85]. Most previously published Km values range from 

0.048 to 0.80 mM, with di hydroxy bile acids having significantly lower (3- to lO-fold) 

values than trihydroxy bile acids. Although Km values were lower for dihydroxy bile 

acids, using the purified 7a-HSDH, the effect was not as pronounced ( less than 2-fold 

differences). In addition, when comparing substrate specificity (V maJ�) 
chenodeoxycholate was found to be a sl ightly better substrate than cholate. 
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Interestingly, apparent kinetic constants varied with respect to bile acid 

hydrophobicity when comparing unconjugated bile acids to their glycine and taurine 

conjugates. Both � and V max were observed to increase in a l inear manner with 

increasing hydrophobicity. This trend is opposite that observed for 7a-HSDH from 

E. coli [113], where � decreased with increasing hydrophobicity. Apparent kinetic 

constants, however, did not correlate with substrate hydrophobicity when comparing 

different parent bile acids. Thus, substrate uti l ity for the 7a-HSDH seems to be a 

product both of substrate hydrophobicity and the presence and orientation of the 

hydroxy groups. Both the primary plots of saturation kinetics (Figure 15) and 

product inhibition patterns (Table 4) were consistent with a ordered sequential 

catalytic mechanism with NADP(H) binding first. This is the first report concerning 

the reaction mechanism of a bile acid 7a-HSDH. Similar mechanisms have been 

noted for 3a-HSDH from microbial [ 1 58] and mammalian [67] sources. Many bile 

acid hydroxysteroid dehydrogenases have been observed to be particularly sensitive 

to sulfhydryl-reactive compounds [4,6,67,78, 1 71] . Thus, it was not suprising that -the 

purified 7a-HSDH was exquisitely sensitive to p-CMB (Table 5) .  Other sulfhydryl

reactive compounds, although inhibiting to a lesser degree, also suggest that a 

sulfhydryl residue(s) may be important for this enzyme. It was interesting, then, that 

the deduced amino acid sequence for the 7a-HSDH possessed only two cysteine 

residues (positions 25 and 182). Furthermore, neither of these residues were well 

conserved among the nine other alcoholjpolyol dehydrogenases examined. It seems 

unl ikely, therefore, that these two cysteines are involved in catalysis. Instead, the 

cysteines may be involved in a structural role for this protein (possibly forming an 



149 

intra- or inter-chain d isulfide bond). Chen et al. arrived at a similar conclusion after 

performing si te-directed mutagenesis studies on the DmADH [24]. The loss of either 

of two "critical" cysteines from this enzyme had no effect upon enzyme activity. The 

inhibit ion detected using N-bromosuccinamide may, too, be due to interactions with 

reactive cysteine groups. However, this compound is also capable of modifying 

tryptophan, tyrosine, and h istidine residues. Although the 7a-HSDH does not contain 

any tryptophan residues, a strongly conserved region containing a tyrosine and several 

h istidines was observed in the aJcoholjpolyol dehydrogenases examined. Further 

experiments will, therefore, be required to determine the exact site(s) of N

bromosuccinamide inh ibition. The lack of inhibition by up to 10 mM metal ion 

chelators was taken as presumptive evidence for the lack of a catalytically important 

metal ion. No further efforts were made to determine the metal content of this 

enzyme. 

Quantitation of free and conjugated bile acids in biological samples has 

attracted much attention from investigators studying the physicochemical and 

physiological effects of these compounds mammalian systems. A variety of 

techniques have been developed for the quantitation and identification of bile acids 

in such samples [167]. A variety of hydroxysteroid dehydrogenases have been used 

to quantitate bile acids and neutral steroids using both spectrophotometry and 

spectrofluoremetry. Purified 3a-HSDH from Pseudomonas testosteroni is used to 

quantitate total bile acids spectrophotometrically to final concentrations of 

approximately 1 0  J..LM [ 1 67] .  Use of spectrofluorometry has permitted quantitation 

down to 0.24 J..LM [ 1 29] .  Urso-bi le acids have been quantitated using partially purified 
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preparations of 7,B-HSDH from Cl. absonum [ 1 1 7] .  The NAD(H)-dependent 7a.

HSDH produced by E. coli has been used to quantitate bile acids [7 1 , 1 14] .  

Lyophi l ized 7a.-HSDH from E. coli and Cl. bifermentans (strain F-6) [ 1 68] have been 

demonstrated to be useful in quantitating final bile acid concentrations ranging from 

20 to 1 00 t.£M. Spectrofluorometry has al lowed detection of 7a.-hydroxy bile acids 

down to 2 to 4 t.£M [7 1 , 1 14] .  Aqueous enzyme preparations, however, are stable for 

only a short period (approx 2 weeks), and background fluorescence from the enzyme 

preparation increases over time [ 1 15 ] .  Use of lyophil ized enzyme has been shown 

to circumvent these problems. The purified 7a.-HSDH described in the current study 

possesses several characteristics which make it an excellent candidate for analytical 

appl ications. First, the enzyme may be obtained with a high yield using a relatively 

simple purification protocol. In addition, the purified protein has been determined 

to be extremely stable in the presence of 5% (v/v) glycerol and 1 mM DTf, both at 

4°C and -20°C. The broad substrate range exhibited by this enzyme allows 

quantitation and/or modification of a variety of 7a.-hydroxy bi le acids and tneir 

derivatives. The low K", (high affinity) and high V max permit use of low final 

concentrations of bile acid in assays and assure reaction to completion. The pH 

optima for oxidation ( 1 0.5) and reduction (6.0) of bile acids are disparate enough to 

decrease the l ikel ihood of back-reaction and thus el iminate the need for keto

partitioning solvents such as hydrazine. We propose that the purified 7a.-HSDH may 

be a useful reagent in the quantitation of both 7a.-hydroxy and 7-keto bile acids in 

clinical and laboratory samples. The purified enzyme has been shown, usi ng both 

spectrophotometry and spectrofluorometry, to be capable of quantitating free and 
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conjugated primary bile acids ranging from 10  nM to  100 J.LM final concentration. 

These values are well within the levels of total bile acid present in portal and 

systemic venous circulation of fasting i ndividuals (reported to be 14 J.LM and 2.4 J.LM, 

respectively [8,50]). Use of the Ps. testosteroni 3a-HSDH in  conjunction with the 

purified 7a-HSDH would permit the direct determination of both total bile acids 

present and the percent of the total bile acid pool comprised by 7a-hydroxy and/or 

7-keto bi le acids. Enzymatic cycling of cofactor has been reported to be capable of 

ampl ifying the f1uorometric signal up to 10,000-fold [68, 133]. This technique has 

previously been util ized to quantitate neutral steroid concentrations to sub-pmol 

ranges with highly purified preparations of 3a- and 3,B-HSDH [ 138] and 1 7,B-HSDH 

[ 139]. These techniques using the purified 7a-HSDH may permit the quantitation of 

minute quantities of 7a-hydroxy and/or 7-keto bile acids and their derivatives in 

biological samples. 

The successful purification of the 7a-HSDH is also important in possibly 

understanding the evolution and physiological sigruficance of this class of enzyrries. 

It is of particular interest that the N-terminal amino acid sequence derived from the 

purified 7a-HSDH is homologous to several non-zinc polyol/alcohol dehydrogenases 

[90-92]. Subunit molecular mass and lack of inh ibition by metal ion chelators are 

consistent with the properties of other members the dehydrogenase superfamily. The 

best al ignment of the N-terminal sequence was achieved with the 7a-HSDH from Cl. 

absonum. The close resemblance between the purified 7a-HSDH and 27- 1 is also 

intriguing. This finding is in agreement with the previous assertion that 27- 1 may be 

a cholate-inducible bile acid oxidoreductase [28]. These prel iminary results suggest 
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that the HSDH's, in  general, may all  belong to the same class (short-chain, non-zinc) 

of dehydrogenases. This may also be interpreted as indicating that the HSDH's al l  

have descended from a common, secondary alcohol dehydrogenase precursor. 

Cloning and Sequencing the 7a-HSDH Gene: The gene encoding the 7a-HSDH was 

cloned, as a 3.8 kb KpnI-PstI restriction fragment, into pUC19, giving the 

recombinant plasmid pBH51. E. coli cultures harboring pBH5 1 were found to over

express the 7a-HSDH activity by approx 30-fold. Several l ines of evidence indicate 

that the protein produced in E. coli is indeed authentic 7a-HSDH. The subunit 

molecular mass, as determined by SDS-PAGE, was identical to enzyme purified from 

Eu. sp. VPI 12708. However, a second band, of about 32 kDa, was also present in  

the  E. coli preparation. The native molecular masses, judged by native gel 

electrophoresis, were also identical. Furthermore, Western analysis revealed that 

both the 3 1  and 32 kDa proteins produced in pBH5 1 transformants were recognized 

by rabbit polyclonal antiserum raised against 7a-HSDH purified from Eu. sp. VPI 

1 2708. This antiserum was demonstrated to inhibit 7a-HSDH enzymatic activity when 

pre-incubated with purified enzyme. In addition, the enzyme's specific activity and 

kinetic constants for several bile acids (cholic acid, glycochenodeoxycholic acid, and 

12-oxo-cholic acid) were found to be essential ly the same for 7a-HSDH purified from 

either Eu. sp. VPI 12708 or a pBH5 1 transformant. The size of the RNA transcript, 

as determined by Northern blot analysis, was the same in both Eu. sp. VPI 12708 and 

E. coli. Furthermore, the 5' ends of these transcripts were essential ly the same, 

suggesting that both Eu. sp. VPI 12708 and E. coli DNA-dependent RNA 

polymerases may be recognizing the same promoter sequence for this gene. Indeed, 
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upstream from the 7a-HSDH open reading frame are at least three regions which 

possess substantial homology to the canonical E. coli promotor sequence as defined 

previously [ 146]. These enticing results represent the first data pertaining to the 

sequence of constitutive promotors in this organism. The definitive determination 

of the promotor sequence, however, will require further experiments (eg. DNA 

footprinting with purified polymerase). 

The abil ity to over-express this protein in E. coli as an active enzyme opens 

several avenues for possible future investigation and appl ication. As indicated above, 

this 7a-HSDH has potential util ity for the quantitation of bile acids in cli nical 

samples. The abi l i ty to overexpress this enzyme, al lowing the preparation of gram 

quantities of purified enzyme, then, has obvious commercial importance. Virtually 

nothing is known about the structure of bile acid binding domains of proteins or the 

structure of their catalytic sites. S ince the 7a-HSDH is well expressed in E. coli, the 

pBH5 1 clone may be used for the analysis of the 7a-HSDH structure through l inker

scanning and site directed mutagenesis. In this manner, residues involved in bile acid 

binding and enzymatic catalysis may be determined. The ability to obtain large 

amounts of this pure enzyme may also permit future work on its crystal l ization and 

determination of the protein structure. 

The deduced amino acid sequence for the 7a-HSDH confirmed the homology 

observed between the N-terminal amino acid sequence and several alcoholjpolyol 

dehydrogenases of the short-chain, non-zinc superfami ly. The homology to the 27 

kDa cholic acid-inducible protein strongly implies that this protein is the 3a-HSDH 

postulated to be involved in 7a-dehydroxylation. Interestingly, the homology between 
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the 7a-HSDH and both the 27 kDa proteins and glucose dehydrogenases extended 

throughout the entire length of the proteins (Figure 29A-D). Although the region 

involved in cofactor binding is well conserved amongst these dehydrogenases, it is not 

yet possible to determine any regions specifically i nvolved in bile acid binding. 

Alignment of the 7a-HSDH with the nine other alcoholjpolyol dehydrogenases did, 

however, reveal six perfectly conserved amino acid residues (Figures 27 and 28). Of 

these, three were glycines, and are probably involved in �-turns important for the 

tertiary structure of the proteins. This was shown to be true for one of the conserved 

glycines in DmADH [24]. The replacement of glycine-14  in this protein with either 

alanine or val ine resulted in a loss of enzymatic activity and thermal stabil ity. The 

remaining three consisted of an aspartic acid, an asparagine, and a tyrosine. 

Although the precise roles of these residues are yet unknown, this tyrosine has 

previously been postulated to be catalytically important for other alcoholjpolyol 

dehydrogenases [ 103] .  These residues are obvious targets for future sire-directed 

mutagenesis studies. 

Sequence analysis of the 3' untranslated portion of the 7a-HSDH mRNA 

revealed a complex potential secondary structure (Figure 2 1 ). The Gibb's free 

energy (approx -50 kCal) suggests that this is a physiologically significant 

conformation. Although it is assumed that this structure acts as a transcriptional 

termjnator, the actual location of the 7a-HSDH mRNA 3' end has not yet been 

determined. Thus, the exact sequences within this region involved in termjnation are 

not yet known. This region may also be important for other gene(s) downstream 

from the 7a-HSDH reading in the opposite direction. Additional sequence data will 
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be required to determine the location and orientation of any such genes. 

It is not yet possible to determine if the hydroxysteroid dehydrogenases 

comprise one or more classes of enzymes. The striking homology between the N

terminal amino acid sequences of the 7a-HSDH from Eu. sp. VPI 12708 and CL 

absonum suggest the possibility of a common ancestor. The apparent conservation 

of cofactor stereo-specificity, discussed above, is also in accord with this hypothesis. 

However, the widely disparate subunit sizes of some purified HSDH's (eg. 7a-HSDH 

from E. coli 54 kDa [ 143], and 7.B-HSDH from Peptostreptococcus productus 64 kDa 

[ 1 23 ]  as compared to 3 1  kDa for the Eu. sp. VPI 12708 7a-HSDH) may indicate of 

the existence more than one type of HSDH subunit. Purification and sequence 

analysis of a l arger number of these proteins wil l  be required to clarify the 

relationships between the HSDH's. 

Purification and Characterization of the NADH:FOR: The cholic acid-inducible 

NADH:FOR was also purified from Eu. sp. VPI 12708. Using a five step protocol, 

over a 370-fold purification with a 10% final yield was obtained. Of the affinity 

resins tested, only Cibacron Blue A bound the NADH:FOR activity. Even this resin 

bound the protein poorly, necessitating mUltiple loadings to achieve acceptable 

recoveries. The nature of the interaction of NADH:FOR with Cibacron Blue A 

appears to be non-specific, since cofactor was not effective in releasing the activity. 

This enzymatic activity was released from the affinity column, non-specifically, with 

1 M KCI. Other investigators have also employed batch elution with KCI to recover 

enzymes from affinity columns. The reason for the apparent inability of 2 M NaCI 

to elute this protein, however, is not clear. The detection of more than one peak of 
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activity i n  the DEAE-HPLC elution profi le was perhaps the most surprising result 

of tbis study. The existence of more than one form of NADH:FOR was hinted at by 

Lipsky and Hylemon [ 1 08], who reported that two peaks of activity were occasionally 

found after DEAE-cellulose chromatography. During this study, the incomplete 

equil ibration of DE-52 was observed to result in  similar elution profiles. The 

presence of mUltiple peaks of activity resulted i n  a great reduction i n  enzyme 

recovery from any one of the peaks. This effect stymied enzyme purification until 

conditions were found at which one of the forms predominated. Phenyl-HPLC was 

one of the best purification steps employed, giving a 7-fold purification with a 32% 

yield. The NADH:FOR exh ibited substantial hydrophobic character on this column. 

The enzymatic activity was only effectively released from the resin after injecting 

1 0% ethanol over the column (Figure 33). The purified protein had a subunit 

molecular mass of 72 kDa. The native molecular mass was estimated to be 2 10  kDa, 

and 150 kDa by gel fi ltration and native gel electrophoresis, respectively. These 

results are somewhat lower than previously reported (260 kDa) [ 108]. Based upon 

these size estimates, the NADH:FOR probably exists e ither as a d imer or trimer of 

identical subunits. 

Further experiments were performed to discern the reason for the segregation 

of NADH:FOR activity into multiple peaks on DEAE-HPLC. The elution pattern 

for this activity was observed to change with respect to the purification protocol 

employed (Figure 35). Thus, the presence of multiple peaks did not appear to be 

due to the presence of several different cholic acid-inducible proteins. The presence 

of a similar, 72 kDa, band in both forms was confirmed both by SDS-PAGE and 
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Western analysis. Instead, this enzyme appeared to be modified as a result of the 

conditions employed during the purification process. Since a similar effect could not 

be produced by a change in pH alone, the interaction with the column resins is 

important for this modification. Purified form I I I  (the predominant form found in 

crude material )  was found to possess a dark yel low color while form I (the 

predominant form after purification) was clear. This suggested that the flavin 

contents of these forms were different. Spectral analysis of the two NADH:FOR 

preparations confirmed the presence of flavin in  form III, but not form I (Figure 36). 

Therefore, the cumulative loss of flavin during the purification process may have 

been, at least in part, responsible for the presence of multiple peaks of activity on 

DEAE-HPLC. The presence of three peaks may be explained if  the NADH:FOR 

exists as a dimer. Form I would represent a dimer of enzyme with each subunit 

containing a flavin. In form II, only one of the subunits would possess a flavin, while 

form III would have no flavin molecules. · Since form II was never oDserved to 

accumulate, there may be allosteric interaction between the subunits in  the dirher 

such that the loss of flavin from one subunit results in  the loss from both. This 

model is shown diagramatically in  Figure 45. Attempts to reconstitute FAD into 

form I were unsuccessful. This may be due to the aerobic conditions under which 

the experiments were performed. Alternatively, additional components, such as 

specific metals, may be required for successful reconstitution. 

The purified NADH:FOR (form I) was found to be susceptible to inhibition 

by a variety of different compounds. The partially purified enzyme was previously 

reported to be somewhat sensitive to p-CMB ( 1  mM = 25% inhibition). In contrast, 
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FIGURE 45: A Possible Model for the Presence of Multiple Forms of the 
NADH:FOR Upon Elution From DEAE-HPLC. The protein subunits for the 
NADH-FOR are i l lustrated as circles and the native enzyme is assumed to form a 
homodimer. Filled circles represent subunits with bound flavin, whi le the open 
circles i ndicate a subunit from which the flavin has been removed. 
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the purified enzyme was nearly completely inhibited by 1 mM p-CMS, CuCl2, HgCI2, 

and NEM. Additionally, 1 mM ZnCl2 gave 73% inhibition. Iodoacetate and 

iodoacetamide, however, did not appreciably affect this activity. The purified enzyme 

was also exquisite ly sensitive to N-bromosuccinamide. This may reflect its abil ity to 

interact with sulfhydryl groups. The reaction with tryptophan, tyrosine or histidine 

as well, though, cannot be excluded. The NADH:FOR was also inhibited by the 

metal ion chelators o-phenanthroline and EDTA. Interestingly, EGTA and NaN3 did 

not inhibit this enzyme. The inhibition of NADH:FOR activity by o-phenanthroline 

has previously been reported [ 1 08] .  The inhibition by EDTA may explain the failure 

of previous attempts to purify this enzyme. During his purification attempts, Lipsky 

reportedly included 0. 1 mM EDTA in all of the buffers [ 1 08] .  The inhibition by 

chelating compounds may be indicative of a catalytically important metal in this 

protein. O-phenanthrol ine is generally known as a non-heme iron chelator. 

Therefore, the NADH:FOR may possess a iron-sulfur center. This -would be 

consistent both with the strong inhibition seen with the sulfhydryl-reactive compounds 

and an apparent irreversible inactivation of the protein at pH values less than 5.0. 

Acriflavine, a flavin analog, was also shown to be a potent inhibitor of the 

NADH:FOR activity. This is also in agreement with previous studies [ 1 08]. It is not 

apparent, then, why acriflavine agarose failed to bind NADH:FOR when it  was 

screen as a possible affinity chromatography resin. 

The NADH:FOR was initially reported to be a cholic acid-inducible activity 

in  Eu. sp. VPI 12708 [ 1 08] .  This was confirmed both by Ochterlony plate and 

Western analysis of prote in expression as wel l as activity stains of native slab gels. 
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Although Northern analysis of NADH:FOR transcription was not performed in  this 

study, this too, is l ikely to be cholic-acid inducible, as has been found for the other 

proteins examined from this organism [28,178]. 

The first 25 N-terminal amino acids of the purified NADH:FOR were also 

determined. This sequence was found to exhibit a significant homology to the enoate 

reductase expressed by Clostridium kluyveri [104] .  It was interesting that the two 

amino acids which could not be determined from the NADH:FOR sequence were 

also not sequencable in the enoate reductase N-terminus [104]. This may indicate 

the presence of simjlar residues in both proteins which are difficult to sequence using 

Edman degradation. Furthermore, this apparent homology is strengthened by the 

other sirrularities between these two proteins. The subunit molecular masses of the 

purified proteins are very similar [104], as deterrruned by SDS-PAGE. Both enzymes, 

in addition, are flavoproteins and may contain an iron-sulfur centers. Interestingly, 

the structural conformation of the enoate reductase has also been demonstrated to 

be sensitive to loss of a flavin during purification. Based upon these sirrularities, i t  

may be proposed that the reactions performed by these enzymes are also al ike. The 

enoate reductase catalyzes the stereospecific reduction of a variety of a./ f3 unsaturated 

short-chained carboxylates [21]. This flavin-dependent reaction is i l lustrated in 

Figure 42B. A homologous reaction in the 7a.-dehydroxylation of bile acids is the 

reduction of 3-oxo-� 4,6-deoxycholic acid to 3-oxo-� 4-deoxycholic acid. The reduction 

of this bond by cell-free extracts has previously been demonstrated to be stimulated 

by the addition of free reduced flavins [174]. However, attempts to detect an 

accumulation of the � 4,6_precursor after inhibiting the NADH:FOR with e ither 
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polyclonal antiserum or acriflavine gave inconclusive results. TLC analysis of the bile 

acid product(s) formed from radiolabelled 3-0XO-A 4,6-deoxycholic acid by the purified 

NADH:FOR wil l  be required to unambiguously prove this function. Although both 

form I and III possessed NADH:FOR activity in vitro, probably only form III, which 

sti l l  contains a flavin, wil l  be capable of reducing the A 6 bond. 

A synthetic ol igonucleotide was created which was complementary for a 

portion the N-terminal amino acid sequence of the NADH:FOR. Using this as a 

probe a chromosomal restriction map for the NADH:FOR gene was determined. 

Based upon this map, the entire open reading frame was predicted to be contained 

on both a 5.9 Kb KpnI and a 8.9 Kb Pst! restriction fragment. The derived map was 

not substantially different from that of the 3' end of the large cholic acid-inducible 

operon. Therefore, i t  is  not yet possible to deterrrune if this prote in is transcribed 

as part of this operon, or if it is part of yet another, heretofore unknown, transcript. 

Since FOR-2 seemed to anneal specifically· to the NADH:FOR gene, the future 

cloning and sequencing of this region should be relatively easi ly accomplished. ' In  

addition, since this probe is the  reverse complement for the  mRNA, it may also be 

used in future Northern analysis of NADH:FOR transcription. The results of these 

experiments could help to determine whether or not the NADH:FOR is indeed 

transcribed as part of the large operon. 
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